

Fakultät für Verfahrenstechnik Institut für Apparate- und Umwelttechnik

Fachbereich Bauwesen

Vergleichende Untersuchung zur Beurteilung von Fluchtwegsituationen mittels computergestützter Evakuierungssimulation anhand charakteristischer Grundgeometrien

Master-Thesis von Paul Geoerg August 2012 Vergleichende Untersuchung zur Beurteilung von Fluchtwegsituationen mittels computergestützter Evakuierungssimulation anhand charakteristischer Grundgeometrien

Vorgelegte Master-Thesis von Paul Geoerg aus Erfurt

- 1. Gutachten: Prof. Dr.-Ing. Michael Rost
- 2. Gutachten: Prof. Dr. Armin Seyfried

Tag der Einreichung: 18. Oktober 2012

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Magdeburg, den 18. Oktober 2012

(Paul Geoerg)

Aufgabenstellung der Master-Thesis

Für Herrn Paul Geoerg, Matrikelnummer: 2010 32 84

Vergleichende Untersuchung zur Beurteilung von Fluchtwegsituationen mittels computergestützter Evakuierungssimulation anhand charakteristischer Grundgeometrien

Erläuterung der Aufgabenstellung:

Die vorliegende Master-Thesis untersucht anhand von vier charakteristischen Geometrien die Vergleichbarkeit der Ergebnisse softwaregestützter Evakuierungssimulation. Für die computergestützte Berechnung werden die Softwarepakete Aseri, Pedgo und Viswalk eingesetzt. Anhand geeigneter Parameter werden die Ergebnisse gegenüber gestellt, bewertet und mit der Handrechenmethode nach Predtetschenski und Milinski verglichen. Die Bearbeitung umfasst:

Die Dearbeitung unnasst.

- die Auswahl und Untersuchung von vier geeigneten Grundgeometrien,
- eine Literaturstudie zur Auswahl und Entwicklung vergleichbarer Parameter,
- die Umsetzung und Simulation der charakteristischen Geometrien mit den Softwareprodukten Aseri (I.S.T. Integrierte Sicherheits-Technik GmbH), PedGo (TraffGo HT GmbH) und VisWalk (PTV Planung Transport Verkehr AG),
- die Auswertung der Ergebnisse und Vergleich mit einer Handrechenmethode,
- die Erstellung eines wissenschaftlichen Posters.

Beginn der Arbeit: 25. April 2012 Abgabe der Arbeit: 08. August 2012

Erstgutachter:

Zweitgutachter:

(Prof. Dr.-Ing. Michael Rost)

(Prof. Dr. Armin Seyfried)

Inhaltsverzeichnis

Ał	okürzungsverzeichnis	5
Sy	mbolverzeichnis	6
Ał	obildungsverzeichnis	7
1	Einführung	12
2	Grundlagen zur Fußgängerdynamik2.1Platzbedarf2.2Geschwindigkeit2.2.1Geschwindigkeit in der Ebene2.2.2Geschwindigkeit auf Treppen2.3Fluss2.4Dichte2.5Weitere Einflussfaktoren2.6Zusammenfassung	14 14 15 15 15 17 18 18
3	Methodik3.1Vergleichsparameter3.2Simulationsprogramme3.2.1Aseri3.2.2PedGo3.2.3Viswalk3.2.4Übersicht der Standardeinstellungen3.3Dynamisches Strömungsmodell3.4Quantifizierung der Unterschiede	20 20 21 23 26 28 29 34
4	Szenarien 4.1 Geo 1 4.2 Geo 2 4.3 Geo 3 4.4 Geo 4 4.5 Globale Randbedingungen und programmspezifische Einstellungen 4.5.1 Aseri 4.5.2 PedGo 4.5.3 Viswalk 4.5.4 Predtetschenski und Milinski	$35 \\ 35 \\ 36 \\ 36 \\ 37 \\ 38 \\ 38 \\ 39 \\ 40 \\ 40 \\ 40$
5	 Sensitivitätsanalyse 5.1 Einfluss der Geschwindigkeitsverteilung (Viswalk)	43 44 45 47

	$5.4 \\ 5.5 \\ 5.6 \\ 5.7$	Einfluss des Querschnitts nach dem Zusammenfluss (Viswalk)	$49 \\ 50 \\ 51 \\ 52$
6	Ausv 6.1 6.2 6.3 6.4	wertung und Interpretation g Geo 1 - Bottleneck g 6.1.1 Geo 1a - Variation der Breite des Bottlenecks g 6.1.2 Geo 1b - Variation der Länge des Bottlenecks g Geo 2 - T-Kreuzung g Geo 3 - Y-Vereinigung g Geo 4 - Vereinigung nach einer Treppe g	53 53 53 58 63 67 71
7	Schl_{2}	assfolgerungen / Conclusion	74
Lit	eratu	rverzeichnis	77
Gl	ossar	8	32
Sti	chwo	rtverzeichnis	33
Ap	ppend A B	ixA-SimulationsergebnisseAA.1SimulationsergebnisseGeo 1aA.2SimulationsergebnisseGeo 2A.3SimulationsergebnisseGeo 3A.4SimulationsergebnisseGeo 4A.4SimulationsergebnisseBB.1Geo 1aBB.2Geo 1bBB.3Geo 2BB.4Geo 3B	-1 -1 -2 -3 -6 -1 -1 -3 -5 -7
	C D E	B.5 Geo 4 B Übersicht der Simulationen C Weiterführende Screenshots D D.1 Geo 1a - Geschwindigkeitsanpassung Aseri D D.2 Geo 2 - limitierender Parameter D VBA-Funktionen E E.1 EucDist E E 2 EucCos E	-8 -1 -1 -2 -1 -1 -1
	F	Mathematische Interpretation des Simulationsfehlers	-1 -1 -1 -1
	0	G.1 Volltext der Master-Thesis	-1 -1 -1 -1

$Abk \ddot{u}rzung sverzeichnis$

Ε	Experiment
Geo	Geometrie
IMO	International Maritime Organization
MSC MVStättV	Maritime Safety Comittee Musterversammlungsstättenverordnung
РМА	${\it Predtetschenski-Milinski-Areal}$
R RiMEA	Rechenmodell Richtlinie für Mikroskopische Entfluchtungsanalysen

Symbolverzeichnis

Α	Fläche $/m^2$
В	Brustbreite /m
b	Querschnitt $/m$
$b_{Eingang}$	Breite Eingang /m
b _{Gang}	Breite Gang $/m$
с	Abstand der Mittelpunkte zweier Kreise /m
D	(Personen-)Dichte $/P/m^2$
Δt	Zeitintervall $/s$
D_{PM}	(Personen-) Dichte im dynamischen Strömungsmodell nach Predtetschenski und Milinski $/P/m^2$
ϵ	euklidischer Abstand (= relative Differenz zwischen Modell und Experiment)
\vec{F}_{α}	Korrekturterm des Social-Force-Models
$\vec{f}_{\alpha i}$	Anziehende Kraft durch eine Attraktion im Social-Force-Model
\vec{F}_{α}	Fluktuationsterm im Social-Force-Model
$\vec{f}_{\alpha\beta}$	Abstoßende Kraft durch andere Personen im Social-Force-Model
$\vec{f}_{\alpha\alpha'}$	Anziehende Kraft durch eine Gruppe im Social-Force-Model
$\vec{f}_{\alpha B}$	Abstoßende Kraft durch Hindernisse im Social-Force-Model
\vec{f}_{α}^{drv}	Antriebskraft zum Erreichen eines Ziels im Social-Force-Model
f	projizierte Fläche einer Personenmenge / P/m ²
J	Fluss / P/s
J_s	spezifischer Fluss / P/(ms)
l_{Treppe}	Treppenlänge /m
1	Länge /m
m_{lpha}	Masse eines Fußgängers im Social-Force-Models $/{ m kg}$
Ν	Personenanzahl im Zeitintervall $/ P/s$
N(t)	Personenanzahl in Abhängigkeit der Zeit
Pos	Position
Р	Personen
p_{ij}	Wahrscheinlichkeit der Bewegung in PedGo
φ^{-}	inneres euklidisches Produkt
p_j	Potentialwert der Zelle i in PedGo
p_0	Potentialwert der Ausgangszelle i in PedGo
$q_{ m res}$	resultierende Bewegungsintensität /m/min
$q_{ m erf}$	erforderliche Bewegungsintensität /m/min
$q_{ m max}$	maximale Bewegungsintensität /m/min
Q_{i+1}	Durchlassfähigkeit des vereinigten Personenstroms $/m^2/min$
q_{i+1}	Bewegungsintensität des vereinigten Personenstroms /m/min
q	Bewegungsintensität /m/min
Q	Durchlassfähigkeit $/m^2/min$
р	Anteil am vereinigten Personentrom /%

r	Radius /m
S	Schulterbreite $/m$
$t_{100\%}$	vollständige Entleerungszeit $/s$
$t_{\rm Anfang}$	Startzeitpunkt /s
$t_{\rm Ende}$	Endzeitpunkt /s
$t_{ m Reaktion}$	Reaktionszeit $/s$
$t_{ m Reise}$	Reisezeit /s
t	Zeit $/s$
au	Bewegungsverzögerung infolge einer Staubildung /min
Θ	Trägheitsparameter in PedGo
ϑ	Steigungswinkel /°
\vec{v}_{lpha}	aktuelle Geschwindigkeit im Social-Force-Modell $/m/s$
ν	Geschwindigkeit $/m/s$
v_0	Wunschgeschwindigkeit $/m/s$
$v'_{\rm Stau}$	Rückstaugeschwindigkeit $/m/s$
$v_{ m Stau}$	Stauabbaugeschwindigkeit $/m/s$
$v_{\mathrm{Treppe, Ref}}$	Referenzgeschwindigkeit auf einer Treppe $/m/s$
ζ	Parameter Schwanken in PedGo

Abbildungsverzeichnis

$\frac{1}{2}$	Empirischer Zusammenhang von Geschwindigkeit und Dichte	$\frac{16}{17}$
3 4 5 6 7 8	Agentenmodellierung (Aseri)	21 24 25 29 31 32
$egin{array}{c} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	Geo 1 - schematischer AufbauGeo 2 - schematischer AufbauGeo 3 - schematischer AufbauGeo 4 - schematischer AufbauBeispielhafte Darstellung der PMA (Predtetschenski-Milinksi-Areal)Berechnungsschema der Geometrien (Predtetschenski und Milinksi)	$35 \\ 36 \\ 37 \\ 37 \\ 41 \\ 42$
15 16 17 18 19 20 21 22	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 44 \\ 46 \\ 46 \\ 47 \\ 47 \\ 49 \\ 50 \\ 51 \end{array}$
$\begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \end{array}$	Geo 1a - Einfluss der BottleneckbreiteGeo 1a - Einfluss der BottleneckbreiteGeo 1a - ScreenshotsGeo 1b - Einfluss der BottlenecklängeGeo 1b - Einfluss der BottlenecklängeGeo 1b - ScreenshotsGeo 1b - ScreenshotsGeo 2 - Einfluss der Breite des ZustromsGeo 2 - Einfluss der Breite des ZustromsGeo 3 - Y-VereinigungGeo 3 - Symmetriebruch und Konsequenzen (PedGo)Geo 2 / 3 - Vergleich der T- und Y-KreuzungGeo 4 - Vergleich der Trajektorien für Geo 2 und Geo 3 (Aseri)Geo 4 - Vereinigung nach einer Treppe	$54 \\ 55 \\ 57 \\ 58 \\ 59 \\ 61 \\ 63 \\ 64 \\ 65 \\ 67 \\ 68 \\ 69 \\ 69 \\ 71 \\ 72$
B.38 B.39	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	B-1 B-2

B.40 Geo 1a - 2,00 m \times 4,00 m - Streuung der Ergebnisse $\hfill \ldots \ldots \ldots \ldots $ B-2
B.41 Geo 1b - $1,20m\times0,06m$ - Streuung der Ergebnisse $\ldots\ldots\ldots\ldots$ B-3
B.42 Geo 1b - 1,20 m \times 2,00 m - Streuung der Ergebnisse $\hfill \ldots \ldots \ldots \ldots \ldots$ B-4
B.43 Geo 1b - 1,20 m \times 4,00 m - Streuung der Ergebnisse $\hfill \ldots \ldots \ldots \ldots \ldots$ B-4
B.44 Geo 2 - $0,80m$ - Streuung der Ergebnisse \ldots
B.45 Geo 2 - 1,20 m - Streuung der Ergebnisse \ldots
B.46 Geo 2 - 2,40 m - Streuung der Ergebnisse \ldots
B.47 Geo 3 - Streuung der Ergebnisse
B.48 Geo 4 - Streuung der Ergebnisse
D.49 Geo $1a$ - effektive Gehgeschwindigkeit \hdots
D.50 Geo 2 - Gegenüberstellung Viswalk und PedGo $\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ D-2
F.51 Zusammenhang zwischen simuliertem und korrigiertem Kurvenverlauf $\ \ldots\ \ldots\ F-1$
F.52 Geo 2 - 2,40 m - Detailbetrachtung im Abschnitt A \ldots
F.53 Geo 2 - $2,40m$ - Detailbetrachtung im Abschnitt B
F.54 Geo 2 - 2,40 m - Detailbetrachtung im Abschnitt C
F.55 Geo 2 - 2,40 m - Detailbetrachtung im Abschnitt D

Kurzfassung

Vor dem Hintergrund einer steigenden Komplexität öffentlicher Gebäude und Versammlungsstätten wird zum Nachweis der Wirksamkeit kompensatorischer Maßnahmen bei der Abweichung von normativen Vorgaben, der Entleerungsverlauf zunehmend mittels rechnergestützter Simulationsmodelle dargestellt.

Diese Rechenprogramme beruhen auf unterschiedlichen Modellansätzen, denen Vereinfachungen und Randbedingungen zugrunde liegen, um einen umsetzbaren Rechenaufwand zu erhalten.

Die vorliegende Arbeit untersucht anhand vier charakteristischer Grundszenarien die Ergebnisse der Entleerungsverläufe und der Personenflüsse, die mit den mikroskopischen Simulationsprogrammen Aseri 4.8c, PedGo 2.5.1.0-beta und Viswalk 5.40-03 ermittelt wurden.

Es werden eine Engstelle, der Zusammenfluss zweier Personenströme in T- bzw. in Y- Form sowie die Vereinigung von zwei Rettungswegen in einem Treppenhaus untersucht.

Zur ergänzenden Beurteilung werden die Einflüsse variierender geometrischer Parameter untersucht. Die ermittelten Ergebnisse werden mit empirischen Untersuchungen verglichen und mit einer mathematischen Methode sowohl auf ihre qualitative als auch ihre quantitative Ähnlichkeit hin untersucht.

Es zeigt sich, dass die Ermittlung absoluter Entleerungszeiten keine zuverlässige Beurteilungsgrundlage darstellt, da die untersuchten Modelle in ihren Ergebnissen inkongruent sind. Einfache, unidirektionale und auf wenige beeinflussende Effekte reduzierte Szenarien, wie die Bewegung durch Engstellen, werden mit einer geringen Abweichung in deren Ergebnissen berechnet. Bereits bei starken Änderungen in der Bewegungsrichtung und erhöhten Interaktionen im Kontext von sich vereinigenden Personenströmen wird ein zunehmender Einfluss der modellbedingt eingegangenen Vereinfachungen in den Ergebnissen sichtbar.

Es zeigt sich, dass die Zuhilfenahme von Simulationsmodellen zur Bewertung von Rettungswegsituationen ein gewinnbringendes Werkzeug darstellen kann, wenn die Auswahl der Eingabeparameter unter großer Sorgfalt und einer kritischen Bewertung der erzielten Ergebnisse durch einen erfahrenen, methodisch gut geschulten Anwender gewährleistet wird.

Schlagworte: Evakuierung - Fußgänger - Gruppendynamik - Rettungsweg - Sicherheit - Simulation

Abstract

With reference to the advanced complexity of public buildings and assembly places, it is more and more common to constitute the depletion process through computerized simulation models, in order to proof the evidence of the performance of compensatory measures of the divergence from normative standards.

These calculating programs are based on different pattern approaches, which rely on simplifications and limiting conditions to receive a convertible computation. This master thesis examines with the help of four characteristic scenarios the results of pedestrian flows, which determined by the microscopic simulations programs Aseri 4.8c, PedGo 2.5.1.0-beta and Viswalk 5.40-03.

The distinctive scenarios are represented by a constriction, a confluence of two pedestrian flows in the shape of T and Y and the merging of two escape routes in a stairwell.

To complete the comprehensive evaluation, the impacts of varying geometrical parameters are examined. The ascertained results are compared to empirical investigations and reviewed in the context of qualitative and quantitative similarities by a mathematical method.

It turns out that the examination of absolute evacuation times is not a reliable basis for valuation, because of the incongruence of results of the investigated models. Geometries which are simple, unidirectional and with few influencing effects, like the movement through a bottleneck, will be calculate with a little deviation from the results. Severely alterations of the movement direction and an increased interaction in the context of merging pedestrian flows will end up in the rising impact of model based simplifications on the results.

Simulation programs can be a helpful tool for the evaluation of escape route situations, if the selection of the input parameters is denoted by diligence and a critical handling of the results by an experienced and well skilled user.

Keywords: Crowd dynamics - escape route - evacuation - pedestrian - safety - simulation

1 Einführung

Nahezu jedes Jahr findet weltweit ein Großereignis mit toten oder verletzten Teilnehmern¹ ein tragisches Ende. Die Komplexität der Versammlungsstätten mit hohen Besucherzahlen wächst ebenso wie die Vielschichtigkeit an ingenieurwissenschaftlichen Nachweismethoden für Kompensationsmaßnahmen im Zuge von Abweichungen normativer Vorgaben. Daher rückt die Frage nach der Zuverlässigkeit eingesetzter Rechenmodelle in den Vordergrund.

Nicht erst seit dem verheerenden Ausgang der Massenveranstaltung Love Parade 2010 in Duisburg (21 Tote, mehr als 500 Verletzte) werden die planerischen Anforderungen, der Umfang der frühzeitigen Einbindung aller an der Veranstaltung Beteiligten und die Methodik der Bewertung der Veranstaltungssicherheit in einer breiten Öffentlichkeit diskutiert.

Bereits in der zweiten Hälfte des vergangenen Jahrhunderts kam es infolge tragischer Unglücke (z.B. Konzert der Rockband "The Who" 1979 (11 Tote), Feuer im Stadion von Bradford 1985 (56 Tote) oder dem Konzert der Rockgruppe "The Great White" 2002 (96 Tote)) durch organisatorische und bauliche Versäumnisse zu einer steigenden Erwartungshaltung an die ingenieurwissenschaftlichen Nachweismethoden. Die gleichzeitig wachsenden Berechnungsmöglichkeiten infolge einer immer leistungsfähiger entwickelten Computerinfrastruktur führten zu einer Verfeinerung der Ingenieurmethoden [1, S. 24 f.], [2, S. 791].

Wo immer sich eine große Personenzahl in einer räumlich und zeitlich begrenzten Anordnung befindet, ist eine besondere konzeptionelle Aufmerksamkeit notwendig. Denn zum einen stellen Evakuierungen nie eine Situation aus dem Berufs- und Erfahrungsalltag, sondern immer eine Ausnahmesituation dar, woraus ein erhebliches Risiko für unvorhergesehene Ereignisse resultiert [3, S. 203].

Zum anderen existieren im Wesentlichen drei Faktoren, durch deren Ausgestaltung die Sicherheit großer Menschenmengen beeinflusst werden kann: Design, Information und Crowd Management [4, S. 24].

Um die bauliche Ausgestaltung einer Geometrie (Geo) hinsichtlich ihrer Sicherheit von Rettungswegen, der Personensicherheit sowie die Dynamik innerhalb der Fußgängermenge bewerten zu können, werden häufig Computersimulationen eingesetzt. In diesen Rechenmodellen werden mit Hilfe mathematischer Modellierung empirisch beobachtete Phänomene von Fußgängern abgebildet und das komplexe System der Fußgängerdynamik rechnerisch gelöst. In wie weit aufgrund modellbedingt eingegangener Randbedingungen Kompromisse in der Realtitätstreue der Ergebnisse hingenommen werden müssen, muss für jedes Rechenmodell detailliert nachgewiesen werden. Denn die Ermittlung absoluter Entleerungszeiten oder globaler Personenströme ist in den wenigsten Beurteilungsfällen hinreichend geeignet, eine aussagefähige Bewertung der Fluchtwegsituation zu ermöglichen. Eine belastbare Begutachtung wird erst häufig bei der Betrachtung individueller Verhaltenstendenzen und der präzisen Darstellung von Detailsituationen ermöglicht [5, S. 1].

Die vorliegende Arbeit untersucht anhand vier charakteristischer Grundgeometrien die Vergleichbarkeit computergestützter Evakuierungsberechnung und analysiert die Ergebnisse. Es

¹ Aus Gründen der besseren Lesbarkeit wird in der vorliegenden Arbeit das generische Maskulinum verwendet. Gleichwohl haben die Aussagen für Männer und Frauen gleichermaßen Gültigkeit.

kommen die mikroskopischen Simulationsprogramme Aseri 4.8c, PedGo 2.5.1.0-beta und Viswalk 5.40-03 zur Anwendung.

Nach einer kurzen Einführung in die zur Beschreibung der Fußgängerdynamik notwendigen Parameter in Kap. 2, wird die verwendete Methodik vorgestellt (Kap. 3). Anschließend werden die geometrischen Anordnungen hinsichtlich der Einflussnahme von Eingabeparametern auf die Ergebnissveränderung untersucht (Sensitivitätsanalyse, Kap. 5). Im Anschluss werden sowohl die N(t)-Verläufe als auch die ermittelten spezifischen Personenflüsse ausgewertet (Kap. 6) und interpretiert. Weiterhin wird mit Hilfe von Vektoroperationen die charakteristische Ähnlichkeit und quantitative Distanz zwischen den Ergebnissen gesucht (Kap. 3.4).

2 Grundlagen zur Fußgängerdynamik

Für die modellhafte Darstellung eines Entleerungsvorgangs bedarf es einer realitätsnahen mathematischen Abbildung charakteristischer Verhaltensparameter. Für jede Person resultiert das Verhalten aus einem individuellen Kontext und wird durch eine Vielzahl von intrinsischen und extrinsischen Faktoren beeinflusst. Diese Variablen sind entweder Eingabegrößen und beeinflussen das Rechenergebnis somit maßgeblich oder sie stellen ein Bewertungskriterium (z.B. Level-of-Service-Konzepte, Stauzeiten etc.) dar.

Das folgende Kapitel gibt einen Überblick über die für diese Arbeit wesentlichen Parameter und den empirischen Wissenstand.

2.1 Platzbedarf

Sowohl in Ruhe als auch in Bewegung beanspruchen Fußgänger einen Teil der zur Verfügung stehenden Grundfläche einer Geometrie. Diese Fläche kann näherungsweise als Ellipse betrachtet werden, wobei die Strecke der Hauptachse die Körpertiefe und die Strecke der Nebenachse die Körperbreite darstellt [6, S. 15]. In der Realität wird die auf zwei Dimensionen projizierte Grundfläche durch weitere Projektionen ergänzt. Neben Konstitution und Kleidung gehören hierzu auch mitgeführte Gepäckstücke, an der Hand geführte Kinder, Fahrräder und dergleichen.

Der benötigte Platz ist bei unidirektionalen Bewegungen im Wesentlichen von der Gehgeschwindigkeit und individuellen Wünschen abhängig, bei Stromvereinigungen und gegenläufigen Bewegungsrichtungen kommen weitere Einflussgrößen hinzu (z.b. Interaktion, Reibung, Anziehung etc.) [7, S. 3, 148].

Zu dem individuell benötigten Platz wird zusätzlich ein dichteabhängiger Abstand zu anderen Individuen und Hindernissen eingehalten. Diese Distanz verringert sich mit zunehmender Dichte D, wodurch die Gehgeschwindigkeit abnimmt [8, S. 9413], [9, S. 36]. Denn in Bewegung erhöht sich der Platzbedarf in Laufrichtung um die Pendelbewegung der Beine und in Querrichtung um schwankende Ausgleichsbewegungen (dynamischer Platzbedarf).

Im Mittel beträgt die Projektion des Körperumrisses einer Person P in Ruhe (statischer Raumbedarf) $0,15 \text{ m}^2/\text{P}$ [6, S. 16]. Folglich ergibt sich eine maximal mögliche Grenzdichte von $6,67 \text{ P/m}^2$. Solche enormen Dichten stellen jedoch einen theoretischen Extremwert dar, da sich bereits bei Dichten von $\approx 3,0 \text{ P/m}^2$ ein direkter Körperkontakt kaum noch vermeiden lässt und solche Situationen als unangenehm empfunden werden.

Der Platzbedarf in seiner dynamischen Form beträgt $\approx 0,44 \text{ P/m}^2$. Die Grenzdichte ist daher wesentlich niedriger und beträgt $\approx 2,22 \text{ P/m}^2$ [10, S. 13].

2.2 Geschwindigkeit

Um ihren Aufenthaltsort zu ändern, wenden Fußgänger Energie auf. Diese wird zum Heben und Senken der Gliedmaßen, zur Beschleunigung, Verzögerung oder für Ausgleichsbewegungen benötigt. Die gewählte Gehgeschwindigkeit entspricht hierbei in der Regel dem günstigsten Verhältnis zwischen aufgewendeter Energie und zurückgelegter Strecke [6, S. 21]. Zu den externen Einflussfaktoren auf die Wunschgeschwindigkeit v_0 zählen die Beschaffenheit des Untergrundes, die Länge des Weges, das Wetter sowie die Dichte des betrachteten Personenstroms [8, S. 9413], [11, S. 268]. Denn zum einen benötigen Individuen für eine effektive, unbeeinflusste Bewegung einen charakteristischen Abstand untereinander, zum anderen erhöht sich der Grad des Unwohlseins mit zunehmender Dichte [12, S. III/346], [7, S. 148].

Zu den intrinsischen Einflussfaktoren auf die Gehgeschwindigkeit zählen neben dem Alter, des Geschlechts, der Körpergröße und des gesundheitlichen Zustands der Personen auch die psychische Grundstimmung sowie der Grund der Bewegung.

2.2.1 Geschwindigkeit in der Ebene

Ist die lokale Dichte des Personenstroms $\leq 0,54 \text{ P/m}^2$, bewegen sich Individuen unbeeinflusst von anderen Verkehrsteilnehmern mit ihrer Wunschgeschwindigkeit fort (vergl. Abb. 1²). Diese beträgt in Abhängigkeit von den Randbedingungen der Untersuchung für Männer im Mittel 1,41 m/s und ist für Frauen $\approx 10,9\%$ niedriger $(1,24 \text{ m/s})^3$ [14, S. 6]. In diesem niedrigen Dichtebereich ist die Gehgeschwindigkeit sehr variabel und reagiert sehr sensitiv auf Veränderungen intrinsischer Faktoren [12].

Die Abb. 1 verdeutlicht den großen Beobachtungsbereich empirisch erhobener Gehgeschwindigkeiten. Die Inkongruenz des Datenmaterials resultiert aus den vielseitigen Einflüssen auf die Fußgänger und den Rahmenbedingungen der Experimente.

2.2.2 Geschwindigkeit auf Treppen

Die Fortbewegung auf Treppen setzt sich aus den Komponenten einer horizontalen und vertikalen Ortsänderung zusammen [16, S. 182 f.]. Dabei sinkt die Geschwindigkeit sowohl in der Aufwärts- als auch in der Abwärtsbewegung, wobei die Reduktion in der Aufwärtsbewegung größer ausfällt [17, S. 40]. Die horizontale Ortsänderung beträgt bei vollständiger Freizügigkeit 0,652 m/s und die überwundene Höhendifferenz (vertikale Komponente) erfolgt im Mittel mit 0,362 m/s. Dies entspricht einer Schrittfrequenz von $\approx 2,1$ Schritte/s [10, S. 14].

Im Verhältnis zur ungehinderten Gehgeschwindigkeit in der Ebene sinkt diese bei einer zusätzlich zu überwindenden vertikalen Komponente um ≈ 51 %. In wie weit die Gehgeschwindigkeit sinkt, hängt maßgeblich vom Steigungswinkel und der Bewegungsrichtung ab [18, S. 18, 72 f.].

2.3 Fluss

Der Fluss J eines Personenstroms definiert sich durch die Anzahl Personen N, die einen Messquerschnitt b in einem bestimmten Zeitintervall Δt passieren (Gl. 2.1) [19, S. 3-147].

$$J = \frac{N}{\Delta t} \tag{2.1}$$

² Abbildungen in der vorliegenden Arbeit ohne Quellenangaben wurden vom Verfasser erstellt.

³ Die gemittelte Geschwindigkeit ist abhängig von der geometrischen Anordnung der Untersuchung, der Homogenität der Versuchsgruppe, dem Altersdurchschnitt und weiteren Einflussfaktoren. Beispielsweise kommen Daamen und Hoogendoorn [13, S. 37] auf 1,34 m/s (4,82 km/h). Eine Zusammenfassung der empirischen Datenlage findet sich in Tab. 1.

Abbildung 1: Empirischer Zusammenhang von Geschwindigkeit und Dichte (mit Hilfe des Datenmaterials des Ped.Net-Netzwerkes [15] erstellt).

Im Dichtebereich zwischen $0,54 \text{ P/m}^2$ und $3,8 \text{ P/m}^2$ existiert idealisiert ein linearer Zusammenhang zwischen Dichte und der Gehgeschwindigkeit [12, S. III-370].

Mit zunehmender Dichte steigt die Anzahl der Interaktionen mit anderen Fußgängern und die zur Verfügung stehende Fläche sinkt. In der Folge sinkt die gehbare Geschwindigkeit. Ab einer Personendichte \geq **3,8** P/m² ist in der Regel keine gerichtete Bewegung mehr möglich und die Fortbewegungsgeschwindigkeit sinkt auf annähernd Null.

Die Berechnung des Personenflusses ist weiterhin durch einen hydrodynamischen Ansatz möglich (Gl. 2.2). Hierbei stellt D die durchschnittliche Dichte und ν die durchschnittliche Geschwindigkeit dar.

$$J = v \cdot \mathbf{D} \cdot \mathbf{b} \tag{2.2}$$

Ist der Fluss unter der Annahme, dass sein Verhalten linear interpolierbar ist, auf einen Querschnitt von 1,00 m normiert, so ergibt sich nach Gl. 2.3 der spezifischen Fluss J_s .

$$J_s = \frac{J}{b} = \frac{\Delta N}{\Delta t \cdot b} \tag{2.3}$$

Die empirischen Beobachtungen für den spezifischen Fluss J_s schwanken in Abhängigkeit der experimentellen Randbedingungen, dem Alter der Probanden und der vorhandenenen Dichte in ihrem Maximum zwischen 1,25 bis 2,00 P/(ms) (vergl. Tab. 1) [20, S. 3601].

Die Dichteabhängigkeit des spezifischen Flusses⁴ ist in Abb. 2 beispielhaft zusammen mit dem Verhalten der Gehgeschwindigkeit dargestellt.

⁴ Unter Umständen werden in der Literatur divergierende Begriffe verwendet. So wird beispielsweise in den Untersuchungen von Weidmann [6, S. 53] von der Leistungsfähigkeit eines Querschnitts und bei Predtetschenski und Milinski [21, S. 61 f.] von einer Bewegungsintensität gesprochen.

In den verfügbaren Verordnungen und Normen sind spezifische Flüsse unterschiedlicher Höhe zugelassen. Die Musterversammlungsstättenverordnung (MVStättV) sieht für eine Evakuierungszeit von 120 s je 200 P einen Querschnitt von 1,20 m vor. Daraus resultiert ein mittlerer spezifischer Fluss von 1,39 P/(ms) [22, S. 7 (4)].

Das Maritime Safety Comittee (MSC) Circular 1238 lässt hingegen lediglich einen maximalen Fluss durch eine Tür von 1,33 P/(ms) zu [23, Annex 2, S. 9].

Der empfohlene maximale spezifische Fluss durch einen Gang oder eine Tür nach der Richtlinie für Mikroskopische Entfluchtungsanalysen (RiMEA) ist nochmals auf 1,30 P/(ms) reduziert [14, S. 14], [24, S. III/370 ff.].

Sowohl bei sehr niedrigen als auch bei sehr hohen Dichten stellen sich geringe spezifische Flüsse ein. Bei $\approx 2,00~P/m^2$ lässt sich ein globales Maximum beobachten.

Die Gehgeschwindigkeit sinkt mit steigender Dichte.

Sowohl bei sehr hohen als auch bei sehr niedrigen Dichten stellen sich sehr geringe Flusswerte ein. Bei einer geringen Dichte liegt der Grund in den kleinen Personenzahlen, welche den Querschnitt passieren. Bei hohen Dichten wird die Gehgeschwindigkeit reduziert, wodurch Fußgänger den betrachteten Querschnitt nur sehr langsam passieren können.

Das Optimum liegt bei etwas unterhalb von $2,0 \text{ P/m}^2$ (vergl. Abb. 2).

2.4 Dichte

Die Dichte eines Fußgängerstroms beeinflusst sowohl die mögliche Gehgeschwindigkeit als auch den spezifischen Fluss. Sie beschreibt die Anzahl an Personen N je zur Verfügung stehender Fläche A.

$$D = \frac{N}{A} \tag{2.4}$$

Bei einer niedrigen (Verkehrs-)Dichte lässt sich eine sehr hohe Gehgeschwindigkeit beobachten, die Fußgänger können sich ohne extrinsische Beeinflussungen mit ihrer Wunschgeschwindigkeit fortbewegen. Mit steigender Dichte sinkt die Gehgeschwindigkeit aufgrund der zunehmenden Interaktionen zwischen den Fußgängern (Abb. 2).

Ein wichtiges Maß zur Beurteilung von kritischen Entfluchtungsszenarien stellen Personendichten von $>2,0 \text{ P/m}^2$ über einen Zeitraum von >10 s dar [3, S. 204], [25, S. 7]. Nach RiMEA liegt ein signifikanter Stau vor, wenn über mehr als 10% der Gesamtentleerungsdauer eine Dichte >4 P vorherrscht [14, S. 9].

2.5 Weitere Einflussfaktoren

Es gibt eine Vielzahl weiterer einflussnehmender Faktoren auf die Dynamik von Fußgängern. Hierzu gehören neben dem Grundriss des betrachteten Gebäudes und der Beschaffenheit der Rettungswege, die Ausschilderung und Sichtbarkeit von Hinweisen, die Ortskenntnis, die Verteilung der körperlichen Konstitution des betrachteten Bevölkerungsausschnitts, die Zugehörigkeit bzw. die Bildung von Gruppen (bspw. Familienfeste, Jahrmärkte), der Wachheits- und Alkoholisierungsgrad und die Professionalität von ggf. vorhandenem Ordnungspersonal [12, S. III/350].

Besonderen Einfluss nimmt die Annahme der Reaktionszeit und deren Verteilung auf einen Entleerungsverlauf. Insbesondere in Situationen mit erhöhten Personendichten wird die Evakuierungszeit maßgeblich von der Reaktionszeit derjenigen Personen beeinflusst, die am schnellsten auf das auslösende Ereignis reagieren [26, S. 159]. Denn reagieren alle Personen mit einer sehr geringen Latenz, wird die Kapazitätsgrenze an Engstellen wie Türen oder im Bereich von Zusammenführungen von Rettungswegen schneller erreicht, als wenn sich die Nachfrage über einen größeren Zeitraum erstreckt [27, S. 672].

2.6 Zusammenfassung

Die Tab. 1 gibt einen Überblick über den Stand der empirischen Fußgängerforschung. Sie stellt die Grundlage für die Parameterauswahl der Simulationen dar, ist jedoch keinesfalls abschließend zu verstehen.

Tabelle 1: Fussgängerparameter				
Parameter	Wert	Quelle	Anmerkung	
Geschwindigkeit (\rightarrow)	$1,41 \pm 0,29 \mathrm{m/s}$	[28, S. 7]		
Geschwindigkeit (\rightarrow)	1,24 m/s	[14, S. 6]	Frauen; nach [6]	
	1,41 m/s	[14, S. 6]	Männer; nach [6]	
Geschwindigkeit (\rightarrow)	1,20 m/s	[29, S. 586]	Männer & Frauen	
Geschwindigkeit (\rightarrow)	$1,55 \pm 0,18 \mathrm{m/s}$	[30, S. 2]		
Geschwindigkeit (\rightarrow)	$1,25 \pm 0,32 \mathrm{m/s}$	[12, S. III/360]	Bereich: $0,82 - 1,77^{-5}$	
Geschwindigkeit (\rightarrow)	1,23 m/s	[25, S. 24]	bei Kirmesveranstaltung er-	
			$\operatorname{mittelt}$	
Geschwindigkeit (\rightarrow)	1,017 m/s	[31, S. 8]	in SI-Einheiten konvertiert	
Geschwindigkeit (\uparrow)	$0,70 \pm 0,24 \mathrm{m/s}$	[12, S. III/361]	Bereich: $0,55 - 0,82 \text{ m/s}^{5}$	
Geschwindigkeit (\uparrow)	0,682 m/s	[32, S. 22]		

⁵ Der Wert von $1,25 \pm 0,32 \text{ m/s}$ ist ein durchschnittlicher Wert. Die ermittelten Gehgeschwindigkeiten lagen in einem Bereich von 0,82 - 1,77. Für Frauen lag der Wert entsprechend niedriger.

Parameter	Wert	Quelle	Anmerkung
Geschwindigkeit (\uparrow)	0,8 m/s	[24, S. III/370 f.]	Steigungswinkel 32°
Geschwindigkeit (\uparrow)	0,254 m/s	[31, S. 8]	in SI-Einheiten konvertiert
Geschwindigkeit (\downarrow)	0,70 ± 0,26 m/s	[12, S. III/361]	Bereich: 0,45 – 1,10 m/s
Geschwindigkeit (\downarrow)	0,776 m/s	[32, S. 22]	
Geschwindigkeit (\downarrow)	0,8 m/s	[24, S. III/370 f.]	Steigungswinkel 32°
Geschwindigkeit (\downarrow)	0,305 m/s	[31, S. 8]	in SI-Einheiten konvertiert
Platzbedarf Platzbedarf Platzbedarf Platzbedarf	$\begin{array}{c} 0,213\ m^2\\ 0,100\ m^2\\ 0,125\ m^2\\ 0,15\ m^2 \end{array}$	[33, S. 20] [21, S. 16] [21, S. 16] [6, S. 16]	in Sommerbekleidung in Winterbekleidung
spez. Fluss spez. Fluss spez. Fluss	1,97 P/(ms) 1,77 P/(ms) 1,35 P/(ms)	[34, S. 6] [7, S. 158] [33, S. 45]	arithmetische Mittel; in SI- Einheiten konvertiert
spez. Fluss	1,89 P/(ms)	[35, S. 16]	
spez. Fluss	1,39 P/(ms)	[36, S. 83], [37]	

Tabelle 1: Fussgängerparameter

3 Methodik

Im folgenden Kapitel wird die Methodik der vorliegenden Untersuchung beschrieben. Es werden die zur Bewertung herangezogenen Vergleichsparameter dargestellt und im Anschluss wird auf die verwendeten Rechenmodelle eingegangen.

3.1 Vergleichsparameter

Zur Bewertung der vier Grundgeometrien dieser Arbeit wurden die Parameter der Entleerungszeit tund der spezifische Fluss J_s herangezogen.

Maßgeblich für jedes Genehmigungsverfahren ist die schutzzielorientierte Bewertung der Rettungswegsituation. Für die Gewährleistung der Personensicherheit kommt es stets darauf an, in welcher Zeit sich Personen selbstständig (ohne fremde Hilfe) aus dem Bereich einer gefährdenden Einwirkung bewegen können. Für die Untersuchungsgeometrien wurden mittels der in Kap. 3.2 dargestellten Simulationsprogramme Entleerungszeiten ermittelt und mit empirischen Daten verglichen.

Um einen weiteren Referenzbereich zu erhalten und darüber hinaus die Geometrien 3 und 4 hinsichtlich der Entleerungszeit beurteilen zu können, wurde mit Hilfe des hydraulischen Modells von Predtetschenski und Milinksi ein Bereich berechnet, in welchem die Rechenergebnisse erwartet wurden (Predtetschenski-Milinski-Areal (PMA)). Das Vorgehen ist in Kap. 3.3 nachzuvollziehen.

Neben der Entleerungszeit wurde der spezifische Fluss nach Gl. 2.3 ermittelt. Zur Erhöhung der Vergleichbarkeit und zum Ausschluss weiterer Einflussfaktoren der experimentellen Randbedingungen wurden hierfür die Nettoreisezeiten t_{Reise} ermittelt (Gl. 3.5).

$$t_{\text{Reise}} = t_{\text{Ende}} - t_{\text{Anfang}} \tag{3.5}$$

Das Betrachtungsintervall beginnt mit dem erstmaligen Überschreiten der Zähllinie eines Fußgängers t_{Anfang} und endet mit der Detektion der letzten verbleibenden Person t_{Ende} . Die benötigte Zeit der ersten Person bis zur Zähllinie wurde nicht berücksichtigt.

Neben der Analyse absoluter Entleerungszeiten wurde die mathematische Charakteristik der N(t)-Verläufe anhand von Vektoroperationen begutachtet. Mit Hilfe des euklidischen Abstandes und des inneren euklidischen Produktes kann sowohl die Ähnlichkeit zweier Vektoren (euklidische Distanz) als auch die quantitative Abweichung (inneres euklidisches Produkt) parametrisiert und zueinander in Beziehung gesetzt werden (Kap. 3.4).

3.2 Simulationsprogramme

Im folgenden werden die zur Analyse verwendeten Computersimulationsmodelle Aseri (raumkontinuierlich, zeitdiskret), PedGo (raum- und zeitdiskret, zellularer Automat) und Viswalk (raumkontinuierlich, zeitdiskret) beschrieben und deren interne Wirkungsmodelle dargestellt. 3.2.1 Aseri

Das Simulationsmodell Aseri (Advanced Simulation of Evacuation of Real Individuals) der Firma Integrierte Sicherheits Technik (I.S.T.) GmbH ist ein (raum)kontinuierliches Individualmodell.

Individuen werden durch eine elliptische Gesamtgeometrie dargestellt, welche die projizierte Grundfläche eines Fußgängers in zwei Dimensionen repräsentiert. Diese Ellipse wird durch die normalverteilten Größen Schulterbreite S und Brustbreite B definiert (Abb. 3(b)). Als mathematische Näherung der Ellipse werden drei Kreise definiert, die aneinander angelagert sind (Abb. 3(c)). Der zentrale Größkreis wird durch seinen Radius sowie seinen Mittelpunkt P definiert (Gl. 3.6).

$$R = b \quad \text{wobei} \ b = \frac{B}{2} \tag{3.6}$$

Die angelagerten kleineren Kreise besitzen den Radius r (Gl.3.7).

$$r = \frac{b^2}{s} \text{ wobei } s = \frac{S}{2} \tag{3.7}$$

Der Abstand c der Mittelpunkte der Kleinkreise zum Mittelpunkt des Großkreises ist durch Gl. 3.8 definiert.

$$c = s - r$$

$$= \frac{s^2 - b^2}{s} \text{mit } S \ge B$$
(3.8)

Die individuelle Bewegung der Agenten wird durch die Veränderung ihrer Lage im dreidimensionalen kartesischen Koordinatensystem beschrieben, in welches alle geometrischen Strukturen integriert werden. Die Personenposition Pos $= x_{Pos}, y_{Pos}, z_{Pos}$ wird durch den Mittelpunkt der Körperellipse (Abb. 3(a)) beschrieben.

Abbildung 3: Agentenmodellierung in Aseri [38, S. 8 f.]. Die Projektion des Platzbedarfs eines Agenten erfolgt durch die Aneinanderlagerung mehrerer Kreise in einem definierten Abstand ihrer Mittelpunkte.

Die Ortänderung eines Agenten erfolgt durch eine global gerichtete Bewegung in Richtung eines Ziels (z.B. Raum im Freien, Ausgang), die durch eine endliche Menge an lokalen Zwischenzielen ergänzt wird. Als Startbedingung gilt die geometrisch kürzeste Route zum globalen Ziel. Von dieser Route kann ein Agent abweichen, wenn sich Stauungen bilden [39, S. 16]. Die Fortbewegung erfolgt mit der Wunschgeschwindigkeit nach Gl. 3.9.

$$v_0 = (v_x, v_y, v_z) \tag{3.9}$$

 v_0 ist in Aseri ein dreidimensionaler Vektor im dreidimensionalen Raum. Die ungehinderte Gehgeschwindigkeit in der Ebene ist eine Eingabegröße und wird als Zahlenwert entsprechend einer Verteilung für eine Gruppe von Personen zugeordnet.⁶

Für die horizontal und vertikal kombinierte Bewegung auf Treppen wird die Gehgeschwindigkeit in Abhängigkeit der Stufenbreite und des Anstiegs reduziert. Diese Reduktion wird durch einen Korrekturfaktor implementiert, der aus empirischen Beobachtungen abgeleitet und linear interpoliert wurde [40, S. 37 f.].

$$v_{Treppe} = v_0 \frac{v_{\text{Treppe,Ref}}}{v_{\text{Ref}}} \cdot \begin{cases} 1.0 \text{ treppauf} \\ 0.7 \text{ treppab} \end{cases}$$
(3.10)

Die Referenzgeschwindigkeit auf der Treppe $\nu_{\text{Treppe, Ref}}$ wird durch lineare Interpolation zwischen den tabellierten Werten für die Stufenbreite und Stufenhöhe ermittelt. (Tab. 2).

Stufenhöhe / cm	Stufenbreite / \mathbf{cm}	$v_{\mathrm{Treppe,Ref}} \ / \ \mathrm{m/s}$
eben	eben	1,40
16,50	33,00	1,23
16,50	33,50	1,16
17,80	27,90	1,08
19,10	25,40	1,00

Tabelle 2: Gehgeschwindigkeiten auf Treppen [38, S. 15 f.]

Um den Ermüdungseinfluss einer Bewegung treppaufwärts zu berücksichtigen, wurde hierfür ein Reduktionsfaktor von 0,7 eingeführt⁷.

Bewegen sich Individuen in einer Gruppe oder auf begrenztem Raum, können sich nicht alle Personen mit ihrer Wunschgeschwindigkeit fortbewegen. Daher wird in Aseri alle 0,5 s ein sequentielles Update vorgenommen, in welchem lokale Ziele auf Konflikte (Stau, Interaktion mit anderen Agenten, Ausgleichsbewegung etc.) hin geprüft werden⁸. Ist das lokale Ziel durch einen anderen Agenten belegt, wird dieses mit dem geringsten möglichen Abstand anvisiert.

Die Wahl des Fluchtweges erfolgte in der vorliegenden Untersuchung durch die Eingabegröße des kürzesten Weges. Bei dieser Auswahl bewegen sich die Agenten von ihrer Startposition entlang des geometrisch kürzesten Weges in den sicheren Bereich.

Es stehen weitere Optionen für die Wegewahl zur Verfügung. Hierzu zählen der lokal kürzeste Weg (gilt nur in bestimmten Räumen und hat Vorrang vor dem globalen Ziel⁹), die gleichmäßige

⁶ Es ist in Aseri möglich, mit uniformen individuellen Gehgeschwindigkeiten zu rechnen. Von dieser Möglichkeit wurde keinen Gebrauch gemacht, da diese Form der Untersuchung lediglich für spezielle Detailuntersuchungen sinnvoll ist.

⁷ Ausführlich zur Begründung der Faktorenauswahl: [38, S. 16].

⁸ Die Positionen im nächsten Zeitschritt werden rechnerisch nacheinander bestimmt. Der Abstand wird vom globalen Ziel absteigend nach der Entfernung gewählt.

⁹ Das globale Ziel das Ende der Bewegung. In einem Entleerungsszenario ist dies beispielsweise der definierte sichere Bereich oder ein Außenbereich.

oder dynamische Auslastung sowie die Balance, bei welcher der Ausgleich zwischen lokaler und globaler Optimierung geschätzt wird.

Die maximal mögliche Personendichte ist in Aseri abhängig vom Bewegungsmodus¹⁰ der Agenten. Durch diese Festlegungen werden die effektiven Abstände zu räumlichen Begrenzungen und anderen Agenten definiert. Es stehen die Optionen Komfort (Bewegung ohne Räumungscharakter), Entfluchtung (erhöhte Personendichte, leichter Körperkontakt) und Gefahr (starker Körperkontakt) zur Auswahl. Entsprechend der Veränderungen von freien Randschichten und der Intensität des zugelassenen Kontakts, sind die maximal möglichen Personendichten in den Modi Komfort und Entfluchtung 5 P/m^2 und im Modus Gefahr 6 P/m^2 .

3.2.2 PedGo

Das Simulationsmodell PedGo der Firma TraffGo HT GmbH ist ein diskretes Individualmodell, dass auf dem Prinzip eines zellularen Automaten aufbaut. Diese Multi-Agenten-Systeme vereinfachen komplexe Systeme, in dem sie diese in Komponenten geringerer Komplexität aufgliedern. Die Untersuchungsgeometrie wird mit einem Zellengitter belegt, deren einzelne Zellen Bereiche konstanter Einflüsse und Kräfte sind. Die Zellen besitzen zugewiesene Eigenschaften (beispielsweise Tür, Wand, Frei etc.), wodurch eine endliche Zustandsmenge und eine endliche Zahl an zu bewältigenden Übergangszuständen entsteht, die es durch einen Algorithmus zu beschreiben gilt.

Jede Zelle¹¹ besitzt folglich zu jedem diskreten Zeitschritt einen exakt definierten Zustand, der in Abhängigkeit zu benachbarten Zellen in der Struktur steht. Die Bewegung des zellularen Automaten von einer Zelle zu einer Nächsten erfolgt am Ende eines Zeitschrittes mit Hilfe des in Abb. 5(a) und Abb. 5(b) dargestellten Update-Algorithmus. Die Bewegung zu einer benachbarten Zelle am Ende eines Zeitschrittes $t \mapsto t+1$ ist von der Übergangswahrscheinlichkeit abhängig (vergl. Abb. 5(a)). Diese ergibt sich aus dem Feldpotential, welches den kürzesten Weg zu einem Ziel darstellt. Die Feldstärke verhält sich umgekehrt proportional zur Distanz eines Agenten bis zu einem Ziel [42, S. 690 f.] und die Agenten orientieren sich entlang des Potentials, das sich mit dem Abstand der Zelle zum Ausgang erhöht [39, S. 15], [3, S. 209].

Die Eigenschaften einer Population werden vor jedem Simulationslauf normalverteilt zugewiesen und sind durch Mitteltwert, Standardabweichung sowie Extrema definiert (Abb. 4). Enthält die zu berechnende Geometrie zusätzlich zu horizontalen noch vertikale Laufwege, so wird die Gehgeschwindigkeit auf diesen Zellen (Treppen) treppauf mit dem Faktor 0,45 und treppab mit dem Faktor 0,50 multipliziert [43, S. 5].

Zum Ausschluss statistischer Artefakte bei der Verteilung demographischer Parameter wird jede Simulation mit PedGo 500 mal durchlaufen. Anschließend wird derjenige Lauf als Simulationsergebnis gewertet, dessen Geschwindigkeitsverteilung dem 95%-Quantil entspricht. Die Streuung der Ergebnisse sind in Appendix B.1 dargestellt.

Die Grundlage einer gerichteten Bewegung ist die Reduktion der Distanz zu einem sicheren Bereich, von dem sich ein Potential rückwärtig entlang der zurückzulegenden Strecke ausbreitet. Durch die Differenz des Potentials zu den benachbarten Zellen ergibt sich die Laufrichtung des Agenten. Jede Person, welche den sicheren Bereich betritt, wird aus der Simulation entfernt. Die

¹⁰ Die Termini Bewegungsart und Bewegungsmodus werden in der Dokumentation (z.B. [41, S. 45], [41, S. 102]) bzw. im Referenzhandbuch (z.B. [38, S. 38]) nicht einheitlich verwendet. In der vorliegenden Untersuchung wurde daher die Bezeichnung Bewegungsmodus synonym für Bewegungsart verwendet.

¹¹ In PedGo repräsentiert eine Zelle eine Person und hat die Abmaßung 0,40 m × 0,40 m. Dies ergibt eine projiziert Grundfläche von 0,16 m² und bewegt sich damit im selben Bereich, die eine Person bei dichtem Gedränge als Standfläche benötigt [19, S. 3158].

Abbildung 4: Geometrieeingabe und Verteilung demographischer Parameter (Ped-Go)

Wahrscheinlichkeit der Bewegung p_{ij} eines Agenten auf ein freies Nachbarfeld (i,j) wird durch Gl. 3.11 beschrieben.

$$p_{ij} = exp - \left(\frac{P_j - P_0 + \zeta}{\zeta}\right) \tag{3.11}$$

Hierbei sind p_j das Potential der Zelle i, p_0 das Potential der Ausgangszelle und ζ der Parameter für Schwanken (Sway).

Je höher der Parameter ζ ist, desto geringer sind die Abweichungen der Wahrscheinlichkeitswerte, da der Einfluss des Potentialgefälles in Richtung der Bewegung abnimmt (entspricht einer weniger gerichteten Bewegung).

Im Anschluss an die Bestimmung der Wahrscheinlichkeiten aller acht möglichen Bewegungsrichtungen, wird die Wahrscheinlichkeit der aktuellen Laufrichtung mit einem Trägheitsparameter Θ multipliziert (Gl. 3.12).

$$P_{\text{Laufrichtung,entgülitg}} = P_{ij} \cdot \Theta \tag{3.12}$$

Hierdurch wird die momentane Richtung der Bewegung bei hohen Trägheitswerten mit einer größeren Wahrscheinlichkeit beibehalten [44, S. 3-9 f.].

(a) Random-Shuffled-Update- (b) Bewegungsalgorithmus eines Agenten im Algorithmus Zeitschritt (Sub-Update)

Abbildung 5: Schematische Darstellung der Update-Regel und des Bewegungsalgorithmus für PedGo. In einem Zeitschritt (1s) erfolgt eine bestimmte Anzahl an Sub-Updates, deren Anzahl sich aus der Maximalgeschwindigkeit der Population ergibt. Innerhalb des Sub-Updates bewegen sich die Agenten bis zu ihrem lokalen Ziel, wenn dieses erreicht ist, bleiben sie stehen und bewegen sich nicht mehr bis zum nächsten Updateschritt. [44, S. 3-12 f.].

3.2.3 Viswalk

Viswalk ist ein mikroskopisches, zeitdiskretes¹² Simulationsmodell, welches von der PTV Planung Transport Verkehr AG vertrieben wird. Operative Entscheidungen der Individuen werden über das Social-Force-Model (Soziale-Kräfte-Modell) in Analogie zur newtonschen Bewegungsmechanik ermittelt [45, S. 572]. Das Verhalten der Fußgänger ist durch intrinsische und extrinsische Faktoren beeinflusst, die in impulsiven und repulsiven Kräften repräsentiert werden [46, S. 379, 445 f.]. Zu den wesentlichen Grundannahmen des Social-Force-Model gehören die Priorisierung des direkten (zeitkürzesten) Weges, die Voraussetzung einer Wunschgeschwindigkeit, der Wunsch nach einem geschwindigkeits- und dichteabhängigen Abstand zu anderen Personen und Hindernissen sowie die Bildung von Gruppen mit zugehörigen Anziehungs- und Abstoßungskräften.

Die Summe der Kraftvektoren im dreidimensionalen Raum (vergl. Gl. 3.15) ergibt die Bewegung. Unsicherheiten im individuellen Verhalten und numerische Artefakte werden über einen Korrekturterm \vec{F}_{α} ausgeglichen. Weiterhin ist es Agenten in Viswalk möglich, mit Hilfe einer dynamischen Umlegung den vermuteten Weg der zeitkürzesten Route einzuschlagen.

Entscheidungen von Fußgängern, sich in bestimmte Richtungen zu bewegen, werden durch soziale Kräfte bestimmt, die physikalischen Kräften sehr ähnlich sind. Die Änderung des Aufenthaltsortes \vec{r}_{α} eines Fußgängers α mit der Masse m_{α} ändert sich analog zu einer physikalischen Ortänderung (Bewegungsgleichung) :

$$m_{\alpha}\frac{d\vec{r}_{\alpha}}{dt} = \vec{v}_{\alpha} \tag{3.13}$$

Die Änderung der Geschwindigkeit erfolgt über die Summe aller sozialen Kräfte (Beschleunigungsgleichung), die auf das Individuum einwirken (Gl. 3.14).

$$m_{\alpha} \cdot \frac{d\vec{v}_{\alpha}(t)}{dt} = \underbrace{\vec{f}_{\alpha}(t)}_{\text{Summenterm der soz. Kräfte}} + \underbrace{\vec{F}_{\alpha}}_{\text{Fluktuation}}$$
(3.14)

wobei

$$\vec{f}_{\alpha}(t) = \underbrace{\vec{f}_{\alpha}^{drv}}_{\text{Ziel}} + \sum_{\beta} \underbrace{\vec{f}_{\alpha\beta}}_{\text{Fußgänger}} + \sum_{\text{Hindernisse}} \underbrace{\vec{f}_{\alpha\beta}}_{\text{Hindernisse}} + \sum_{i} \underbrace{\vec{f}_{ai}}_{\text{Attraktion}} + \sum_{\alpha'} \underbrace{\vec{f}_{\alpha\alpha'}}_{\text{Gruppe}} + \underbrace{\vec{F}_{\alpha}}_{\text{Fluktuation}}$$
(3.15)

¹² Die recheninterne zeitliche Auflösung beträgt in der verwendeten Version 20 Schritte/P, wovon jedoch aus Performancegründen lediglich 10 Schritte/P dargestellt werden.

Ziel \vec{f}_{α}^{drv} :	Der Ziel-Term beschreibt die Antriebskraft, ein bestimmtes Ziel zu erreichen (driving force). Die Anpassung der aktuellen Geschwindigkeit \vec{v}_{α} an die auf das Ziel gerichtete Wunschge- schwindigkeit \vec{v}_{α}^{0} erfolgt exponentiell mit der Relaxationszeit
Fußgänger $ec{f}_{lphaeta}$ / Hindernisse $ec{f}_{lpha B}$:	 ¹ [47, S. 21 I.]. Die Terme Fußgänger und Hindernisse beschreiben abstoßende Kräfte Diese sind vom Abstand und der relativen Coschwin
	digkeit abhängig.
Attraktion $ec{f}_{lpha i}$ / Gruppe $ec{f}_{lpha lpha'}$:	Die Terme Attraktion und Gruppe beschreiben anziehende Kräfte. Dies können sowohl andere Personen (Freunde, Ver- wandte, Bekannte) als auch Orte oder Objekte (z.B. Schau-
Fluktuation \vec{F}_{α} :	fenster) sein [48, S. 233], [49, S. 4284]. Der Term Fluktuation beinhaltet eine stochastische Aus- gleichsfunktion. Hier werden Einflussfaktoren berücksichtigt, die wegen ihres geringen Einflusses keine selbstständigen Ein- flussterme besitzen. Weiterhin werden Artefakte durch die nu- merische Simulation verhindert [47, S. 23].

Die normale Wunschgeschwindigkeit des Fußgängers auf Treppen oder Rampen wird in Viswalk entlang der Steigung interpretiert (Gl. 3.16).

$$\nu_{Treppe,horizontal} = \vec{v}_{\alpha}^{0} \cdot \cos(\alpha) \tag{3.16}$$

Weitere Geschwindigkeitsreduktionen sind anwenderseitig durch die Geschwindigkeitsverteilungen "Walking Behaviour" und der "Area-Walking-Type"- Funktion möglich, wurden aber für die vorliegende Arbeit nicht genutzt.

3.2.4 Übersicht der Standardeinstellungen

In Tab. 4 sind die Standardeinstellungen der Simulationsprogramme aufgeführt, wie sie von den Herstellen vorgegeben werden. Sowohl bei den Verteilungen der Geschwindigkeit als auch bei den Brust- und Schulterumfängen wird von unterschiedlichen Verteilungen und Bemaßungen ausgegangen.

Die für diese Arbeit abweichend verwendeten Einstellungen sind im Kapitel 4.5 detailliert aufgeführt.

Parameter	Aseri	PedGo	Viswalk
Geschwindigkeit / m/s	1,10±0,40	$v_{min} = 0,80$ $v_{max} = 2,00$ $v_{mean} = 1,20^{13}$	$v_{min} = 1,10$ $v_{max} = 1,67$ $v_{mean} = 1,38$
Länge [m] Broite [m]	$0,525 \pm 0,035$ 0.315 ± 0.020	0,4 0,4	$0,435 \pm 0,1$
Reaktionszeit [s]	$0,313 \pm 0,020$ optional	5 ± 5	indirekt über $ au^{14}$
Routenwahl	kürzester Weg		statische Rou- tenwahl
Mehrfachlauf?	\checkmark	\checkmark	\checkmark

Tabelle 4: Standardeinstellungen der verwendeten Simulationsprogramme

¹³ Im PedGo-Referenzhandbuch ([44, S. 5-8]) wird die Einheit cells/s verwendet.

¹⁴ Die Relaxationszeit τ beschreibt die Trägheit des Agenten, da es den Unterschied zwischen der Wunschgeschwindigkeit v_0 und der aktuellen Geschwindigkeit v_{akt} in Form einer Beschleunigung verbindet [46, S. 511 f.].

3.3 Dynamisches Strömungsmodell nach Predtetschenski und Milinski

Die Wegwahl der zu evakuierenden Personen wird durch die Reduzierung der Komplexität einer betrachteten Geometrie zu einer Verkettung von Grundgeometrie beschrieben. Zu den Grundgeometrien gehören horizontale Wege (Mindesbreite b = 0,6 m), Engstellen, aufwärtige und abwärtige Treppen.

Die Art der Bewegung wird in Einzel- und Massenbewegung differenziert, wobei die Einzelbewegung eine ungehinderte Bewegung ermöglicht. Bei der Massenbewegung wird die Möglichkeit der gerichteten Bewegung durch die zur Verfügung stehende Fläche begrenzt. Die Menschenmenge P wird vereinfacht in einem zusammenhängenden Strom erfasst, dessen Dichte D_{PM} das Verhältnis der projizierten Fläche der Menschenmenge f zur Stromfläche beschreibt (Gl. 3.17).

$$D_{\rm PM} = \frac{\sum f}{(b \cdot l)_{Strom}} \quad \frac{m^2}{m^2}$$

= $\frac{\sum P \cdot f}{(b \cdot l)_{Strom}} \quad m^2$ (3.17)

Die maximal mögliche Dichte ergibt sich aus einem empirischen Erfahrungswert und ist mit $D_{\text{max}} = 0.92$ festgelegt¹⁵ [21, S. 47].

Der Personenstrom wird über die geometrischen Parameter Stromlänge l_{Strom} und Strombreite b_{Strom} beschrieben. Zwischen der begrenzenden Geometrie und dem Außenrand des Stromes kommt es zu Ausbildung eines ungenutzen Zwischenraumes (Randschichtbreite Δb), der von Fußgängern als Behaglichkeits- bzw. Sicherheitsabstand zu Wänden eingehalten wird (Abb. 6). Diese Randschichtbreiten sind tabelliert. Aufgrund des Abstandes zwischen Strom und umgebender Wand kommt es zu unregelmäßigen Verdichtungen in der Strommitte, die sich jedoch schnell wieder auflösen und durch eine Mittelwertbildung ausgeglichen werden.

Abbildung 6: Schematische Darstellung des Personenstroms nach Predtetschenski und Milinksi [21, S. 39]

Diese charakteristische zigarrenförmige Ausbildung des Personenstroms entsteht nach dem Modell von Predtetschenski und Milinski unter Normalbedingungen. Am Kopf- bzw. Fußteil bewegt sich eine geringe Anzahl an Personen mit einer größeren bzw. niedrigeren Fortbewegungsgeschwindigkeit als der Hauptteil der Personen. Unter Gefahrenbedingungen (hohe Bewegungsintensität, hohe Gehgeschwindigkeit) wird der Stromkörper deutlich gestreckt. In der Konsequenz kommt es dabei zu einer Veränderung der Stromdichte.

¹⁵ Dieser Bedingung liegt die Annahme zugrunde, dass die projiziert Körperellipse während der Verdichtung keinerlei Deformation erfährt. Der physische Grenzwert liegt demzufolge oberhalb von 0,92.

Die Fläche, die eine Person im dynamischen Strömungsmodell nach Predtetschenski und Milinski im Strom einnimmt, ist die projizierte Grundfläche in Abhängigkeit der physischen Konstitution, des Alters, der Bekleidung sowie der Art und Menge des mitgeführten Gepäcks. Der Flächenbedarf für diese Projektion ist durch gemittelte Abmessung tabelliert (einige Werte sind in Tab. 5 aufgeführt).

Alter	Bekleidung	Fläche f / m^2				
Kind		0,040,06				
Jugendlicher		0,060,09				
Erwachsener in						
	Sommerkleidung	0,100				
	Übergangsstraßenkleidung	0,113				
	Winterstraßenkleidung	0,125				
Erwachsener in						
	mit leichtem Gepäck (z.B. Aktentasche)	0,180				
	mit einem Koffer	0,240				
	mit Rucksack	0,260				
	mit einem Kind an der Hand	0,200				
	mit einem Kind an der Hand mit Gepäck	0,320				

Zur Ermittlung von Evakuierungszeiten und Stauungen werden die Durchlassfähigkeit Q und die Bewegungsintensität q bestimmt. Dabei ist D_{PM} die Dichte der Menschenmenge, die sich mit einer definierten Geschwindigkeit v pro Zeiteinheit t in einem Querschnitt b bewegt (Gl. 3.18).

$$Q = D_{\rm PM} \cdot \nu \cdot b \quad \frac{\mathrm{m}^2}{\mathrm{min}} \tag{3.18}$$

Das Produkt der Dichte D und der Gehgeschwindigkeit v ergibt die Bewegungsintensität q. Sie charakterisiert den Prozess der Bewegung ohne Abhängigkeit der Wegbreite und entspricht damit der Durchlassfähigkeit eines Querschnitts von 1 m (Gl. 3.19) [21, S. 61].

$$q = D_{\rm PM} \cdot \nu \quad \frac{\rm m}{\rm min} \tag{3.19}$$

Diese Bewegungsintensität ist von der Art des Weges und der Dichte abhängig und strebt zunächst einem Maximum zu, bevor sie wieder abnimmt. Die Abnahme resultiert aus der Entstehung von Staus, die nach dem Überschreiten einer Grenzdichte auftreten (Abb. 7(b)).

Die Ausbildung eines Staus ist ein Prozess der Parameteränderung des Stromes im Kontext einer Bewegung. Die Rückstaugeschwindigkeit ν'_{Stau} berechnet sich nach Gl. 3.20.

$$v'_{Stau} = \frac{q_1 \cdot \frac{b_1}{b_2} - q_2}{D_{PM1} - D_{PM2}} \quad \text{m/min}$$
(3.20)

30

Abbildung 7: Zusammenhang von Dichte und Geschwindigkeit sowie Bewegungsintensität und Dichte für die verwendeten Grundgeometrien im Bewegungsmodus Gefahrenbedingungen

Erreichen lediglich Personen aus dem Endteil des Personenstroms den Rückstau, hört dieser auf anzuwachsen und bildet sich mit der Stauabbaugeschwindigkeit v_{Stau} zurück (Gl. 3.21).

$$v_{Stau} = \frac{q_{i+1} \cdot \frac{b_{i+1}}{b_i}}{D_{PM;i+1}}$$

$$= v_{i+1} \cdot \frac{b_{i+1}}{b_i}$$

$$= v_1 \cdot \frac{b_1}{b_i} \quad \text{m/min}$$
(3.21)

Für die Berechnung der Bewegungsparameter stehen drei Modi zu Verfügung. Die Bewegung unter Normalbedingungen ist eine zielgerichtete, gleichförmige Bewegung ohne Behinderung in Richtung des Ausgangs. Der Modus Komfort beschreibt einen Bewegungsvorgang ohne Hast und ohne Ziel. Die Gehgeschwindigkeit ist sehr gering, es gibt keinerlei gegenseitige Beeinflussung. Der in der vorliegenden Arbeit angewendete Gefahrenmodus ist durch eine hohe Bewegungsintensität und dem Wunsch nach einer hohen Gehgeschwindigkeit gekennzeichnet.

Die Vereinigung von Personenströmen kann im dynamischen Modell bis zu drei Ströme umfassen. Zur Berechnung der Vereinigung wird zunächst die Durchlassfähigkeit nach der Vereinigung Q_{i+1} aus der Summe der Einzeldurchlässigkeiten bestimmt (Gl. 3.22).

$$Q_{i+1} = \sum Q_i \quad \frac{\mathrm{m}^2}{\mathrm{min}} \tag{3.22}$$

Zur Ermittlung der Bewegungsintensität q_{i+1} wird die Durchlassfähigkeit durch die von der Geometrie abhängigen Strombreite b_{i+1} dividiert (Gl. 3.23) [21, S. 77 f.].

$$q_{i+1} = \frac{\sum Q_i}{b_{i+1}} \quad \frac{\mathrm{m}}{\mathrm{min}} \tag{3.23}$$

Überschreitet die Intensität ihr Maximum bei maximaler Dichte $D_{max} = 0,92$, bildet sich ein Rückstau von der Grenzlinie der Vereinigung aus, der anteilig alle beteiligten Abschnitte erfasst. Für den vereinigten Personenstrom gilt die Maximaldichte $D_{max} = 0,92$, die zugehörige Bewegungsintensität wird aus dem tabellarischem Anhang ermittelt (Tab. 6).

	q _{max} /m/min			q_{max} bei D_{max} /m/min		
	Gefahr	normal	$\operatorname{komfort}$	Gefahr	normal	komfort
Weg, horizontal	12,42	10,12	8,31	9,68	8,36	7,18
$\operatorname{Engstelle}$	13,32	10,65	8,66	10,38	8,94	7,74
Treppe, aufwärts	9,19	7,29	5,98	7,64	6,06	4,86
Treppe, abwärts	9,04	7,47	5,68	5,38	4,44	3,38

Tabelle 6: Maximale Bewegungsintensität und Bewegungsintensität bei maximaler Dichte [21, S. 291 ff.]

Zur Bestimmung der Rückstau- und Stauabbaugeschwindigkeit¹⁶ wird für jeden der sich vereinigenden Ströme ein Anteil p entsprechend seiner Breite an der Staubildung ermittelt (Gl. 3.24).

$$p = \frac{b}{\sum b_i} \tag{3.24}$$

Die Anteile an der Wegbreite der beteiligten Ströme werden im Anschluss umgerechnet.

$$b_{neu} = b_{i+1} \cdot p \tag{3.25}$$

Abb. 8 setzt die zurückgelegte Strecke zur benötigten Zeit ins Verhältnis. Die Steigung der Graphen entspricht der Bewegungsgeschwindigkeit des Personenstroms.

Abbildung 8: Graphische Ausgabe der Entleerung von Geo 2 des hydraulischen Modells nach [21] (erstellt mit Hilfe von Juilfs [50])

Der obere Teil der Datenreihen repräsentiert die Bewegung des Kopfteils, der untere Teil der des Schlussteils. Die Graphen sind mit beschrifteten Datenpunkten versehen, welche die Zeit t bis zum Erreichen des jeweiligen Wegabschnittes darstellen. Die farbliche Codierung stehen für den Kopfteil (rot) und den Schlussteil (grün) des Fußgängerstroms.

¹⁶ Der aufgrund des Überschreitens der Maximaldichte ausgebildete Stau geht mit der Stauabbaugeschwindigkeit zurück.

Das Balkendiagramm auf der linken Seite zeigt die Längen der einzelnen Wegabschnitte. Kommt es am Übergang zweier Wegabschnitte zur Ausbildung eines Staus, wird dies durch eine unterbrochene, horizontal verlaufende Linie dargestellt.

Die Staubildung baut sich von der Abschnittsgrenze mit einer Rückstaugeschwindigkeit v'_{Stau} auf. Ab dem Schnittpunkt mit der Linie des Schlussteils (die letzte Person hat das Stauende erreicht) baut sich die Stauung mit der Stauabbaugeschwindigkeit v_{Stau} ab.

3.4 Quantifizierung der Unterschiede zwischen empirischem und rechnerischem Verlauf

Für den Vergleich der rechnerischen Ergebnisse mit den Messkurven der Experimente werden Vektoroperationen verwendet, deren Ergebnis ein skalarer Wert ist und somit einen quantitativen Vergleich der n-dimensionalen Vektoren erlaubt [51, S. 23]. Die n Messwerte stellen hierbei die Vektoren entlang einer Zeitachse dar. Zum Vergleich wird der gemittelte Abstand zwischen Rechenmodell (R) und Experiment (E) über den gesamten Messzeitraum der Serie und die Form der Vektoren ausgewertet.

Die Ähnlichkeit zweier Vektoren (sehr kleine euklidische Distanz ϵ zwischen den durch sie repräsentierten Punkten) gibt einen Anhaltspunkt für die Ähnlichkeit der Objekte [52, S. 1]. Folglich wird der gemittelte Abstand zwischen Experiment und Rechenmodell über dem relativen Betrag des Experiments verglichen (vergl. Gl. 3.26).

$$\epsilon = \frac{\|E - R\|}{\|E\|} = \sqrt{\frac{\sum_{n=1}^{i=1} (E_i - R_i)^2}{\sum_{n=1}^{i=1} (E_i)^2}}$$
(3.26)

Ist $\epsilon \approx 0$, gibt es keinen Unterschied zwischen den Vektoren E und R, sie besitzen die gleiche Magnitude (Höhe).

Für den Vergleich der Vektorform wird das innere euklidische Produkt φ herangezogen (Gl. 3.28). Dieses berechnet sich aus dem Produkt der Beträge der beiden Vektoren E und R multipliziert mit dem Kosinus des von den Vektoren eingeschlossenen Winkels φ , da die Vektoren eine zweidimensionale Ebene durch den Koordinatenursprung im n-dimensionalen Raum definieren [53, S. 171f.]. Die Vektoren können hier als Pfeile eingezeichnet werden, die einen Winkel φ einschließen. Besitzen die Vektoren die gleiche Form, d.h. zeigen die Vektoren in die gleiche Richtung, ist der Winkel $\varphi = 0$.

$$\vec{E} \cdot \vec{R} = \left| \vec{E} \right| \cdot \left| \vec{R} \right| \cdot \cos \angle (\vec{E}; \vec{R}) \tag{3.27}$$

Hierbei ist $cos \angle (\vec{E}; \vec{R}) = cos(\varphi)$. Für das kartesische Koordinatensystem gilt: $\vec{E} \cdot \vec{R} = \sum_{i=1}^{n} E_i; R_i$ und somit ergibt sich Gl. 3.28.

$$\varphi = \cos(\vec{E}; \vec{R})$$

$$= \frac{\sum_{i=1}^{n} E_i \cdot R_i}{\sqrt{\sum_{i=1}^{n} E_i^2 \cdot \sum_{i=1}^{n} R_i^2}}$$
(3.28)

Wenn $\varphi \approx 1$ besitzen die Vektoren keine zeitliche Versetzung zueinander und unterscheiden sich lediglich durch einen konstanten Faktor. Sie sind in ihrer Form identisch.

Diese Art der Auswertung gibt lediglich einen qualitativen Hinweis, eine quantitative Bewertung ist nicht möglich.
4 Szenarien

Das folgende Kapitel beschreibt den Aufbau und den Umfang der untersuchten Szenarien. Es werden vier charakteristische, im Verlauf von Fluchtwegen häufig anzutreffende reale Situationen abgebildet.

4.1 Geo 1

Die erste Geometrie beschreibt die Verengung eines Ganges oder eines Flures zu einer Engstelle. Es ensteht eine Engstelle (Bottleneck), auf deren Fläche eine reduzierte Kapazität für die Personen zur Vefügung steht. Im gesamten Untersuchungsraum ist kein Höhenunterschied zu überwinden, die Bewegung der Agenten besteht lediglich aus einer horizontalen Komponente.

Abb. 9 zeigt den schematischen Aufbau der Untersuchungsgeometrie. Die geometrischen Größen richten sich nach dem experimentellen Aufbau von Seyfried et.al. [54]. Dort wurden 2006 in der Bergischen Kaserne Düsseldorf mit 180 Berufssoldaten Realexperimente durchgeführt, mit denen die Simulationsrechnungen verglichen werden konnten. Es wurden die Parameter Länge l und Breite b variiert.

Abbildung 9: Geo 1 - schematischer Aufbau

Tab. 7 zeigt die varriierten geometrischen Parameter für die Geometrie 1. Um die Vergleichbarkeit der verschiedenen Anordnungen herzustellen, wurde der Personenübergang nicht am Ende, sondern direkt am Eintritt in die Engstelle gemessen (Zähllinie in roter Darstellung der Abb. 9).

Tabelle 7: Variation der Parameter für Geo 1			
Experiment	Breite $/m$	Länge $/m$	
Geo 1a - 1,20 m × 4,00 m	1,20	4,00	
Geo 1a - 1,60 m × 4,00 m	1,60	4,00	
Geo 1a - 2,00 m × 4,00 m	2,00	4,00	
Geo 1b - 1,20 m × 0,06 m	1,20	0,06	
Geo 1b - 1,20 m × 2,00 m	1,20	2,00	
Geo 1b - 1,20 m × 4,00 m	1,20	4,00	

4.2 Geo 2

Die zweite Untersuchungsgeometrie (Abb. 10) repräsentiert den Zusammenfluss zweier Personenströme mit einer Richtungsänderung um 90° (T-Situation). Eine solche Situation findet sich beispielsweise in Fluren oder Gängen, die in einem gemeinsamen Ausgang bzw. Treppenhaus enden.

Abbildung 10: Geo 2 - schematischer Aufbau

Die geometrischen Einflussparameter orientieren sich an den Realexperimenten von Zhang et. al. [30]. Die untersuchte Variable dieser Anordnung ist der Zustrombreite in die Geometrie. In der Geometrie 2 ist kein Höhenunterschied zu überwinden, die Gehgeschwindigkeit wird durch die horizontalen Komponente charakterisiert.

Tab. 8 zeigt die untersuchten Variationen der Zustrombreite b. Um die Geometrie in den drei Softwarelösungen modellieren zu können, bedurfte es keine zusätzlichen Anpassungen.

Tabelle 8: Variation der Parameter für Geo 2			
$\mathbf{Experiment}$	$b_{Eingang} / m$	b_{Gang}/m	
Geo 2 - 0,80m	0,80	2,40	
Geo 2 - 1 ,20 m	1,20	2,40	
Geo 2 - 2,40 m	2,40	2,40	

4.3 Geo 3

Geo 3 stellt eine veränderte bautechnische Lösung der Personenstromvereinigung dar. Um die abrupte Richtungsänderung um 90° und die damit einhergehenden Geschwindigkeitsreduktion zu minimieren, wird der Änderungswinkel der Bewegungsrichtung auf 45° (Y-Situation) verringert (Abb. 11).

Auch in dieser Anordnung ist keine Höhendifferenz zu überwinden, die Gehgeschwindigkeit resultiert vollständig aus der horizontalen Komponente. Zur Modellierung in den verwendeten Simualtionslösungen mussten keine gesonderten Anpassungen vorgenommen werden.

Da für diesen geometrischen Aufbau keine experimentellen Daten zur Verfügung stehen, erfolgt die Auswertung anhand der rechnerisch ermittelten Kennzahlen.

Abbildung 11: Geo 3 - schematischer Aufbau

4.4 Geo 4	
-----------	--

Mit der vierten Geometrie wird ein typisches Treppenhausszenario analysiert (Abb. 12). Hierbei werden zwei Personenströme vereinigt, wobei sich ein Personenstrom bereits in einem Treppenhaus befindet und zusätzlich zur horizontalen Positionsänderung eine vertikale Differenz überwinden muss (Treppenhaus). Im zweiten Personenstrom bewegen sich die Agenten mit einer rein horizontalen Bewegung fort. Die Vereinigung erfolgt auf der unteren der beiden Ebenen (Abb. 12(b)).

Abbildung 12: Geo 4 - schematischer Aufbau

Diese Untersuchungsanordnung erhöht den Komplexitätsgrad sowie die Anforderungen an die Simulationsprogramme. Zum einen wirken Treppen aufgrund der verringerten Gehgeschwindigkeit wie ein Kapazitätsengpass (Bottleneck) [19, S. 3151]. Zum anderen implementiert jedes der drei ausgewählten Rechenmodelle die Verringerung der Gehgeschwindigkeit auf Treppen mit einem anderen Ansatz. Die verwendeten Gleichungen sind im Folgenden aufgeführt und ausführlich in Kap. 3 besprochen. Aseri berechnet den Einfluss der Treppe nach Gl 4.29, PedGo nach Gl. 4.4 und Viswalk nach Gl. 4.4.

$$\nu_{Treppe} = \nu_0 \frac{\nu_{\text{Treppe,Ref}}}{\nu_{\text{Ref}}} \cdot \begin{cases} 1.0 \text{ treppauf} \\ 0.7 \text{ treppab} \end{cases}$$
(4.29)

$$\nu_{\rm Treppe} = \frac{1}{2} \cdot \nu_{\rm horizontal} \tag{4.30}$$

$$\nu_{\text{Treppe, horizontal}} = \vec{v}_{\alpha}^{0} \cdot \cos(\alpha) \tag{4.31}$$

Die Auswertung der Ergebnisse erfolgt wie in Geometrie 3 qualitativ, da zu dieser Versuchsanordnung keine empirischen Referenzdaten vorliegen.

4.5 Globale Randbedingungen und programmspezifische Einstellungen

Die vergleichende Untersuchung wurde in einer rauchfreien Umgebung ohne zusätzliche Einschränkungen für die Begehbarkeit der Geometrien durchgeführt. Rauchentwicklung und Wärmeeintrag entsprechen aus naheliegenden Gründen für die Evakuierungsentscheidung eines Gebäudes, der Untersuchungsgegenstand der vorliegenden Arbeit stellt jedoch die Abbildung von Fußgängerphänomenen in den Vordergrund.

Aus diesem Grund wurden die vorgebenenen Einstellungen der Simulationsprogramme prinzipiell nicht verändert. Die Eingabeparameter wurden lediglich an jenen Stellen manipuliert, an denen systematisch abweichende Ergebnisse festgestellt werden konnten. Die Änderungen sind in den nachfolgenden Abschnitten dokumentiert.

Die einzige global vorgenommene Veränderung der Standardeinstellung ist die Einstellung einer Reaktionszeit t_{Reaktion} von **0s**. Hintergrund für diese Entscheidung ist der hohe Einfluss der Verteilung der Reaktionszeit einer Population auf die Entleerungszeit. Die Reaktionszeit kann unter Umständen mehr als die Entleerungszeit betragen und unterliegt einer sehr großen Streuung. Die vorliegende Untersuchung bewertet die systematischen Unterschiede der verwendeten Methoden und nutzt vergleichbare Personengruppen zur Analyse der Geometrien. Ein systematischer Unterschied in den Reaktionszeiten der Populationen wurde ausgeschlossen und nicht weiter untersucht [39, S. 5].

4.5.1 Aseri

Um eine vergleichbare Zähllinie für alle Variationen in x- und y-Richtung gewährleisten zu können, wurden die Personen zum Eintritt der Engstelle (y = 0) erfasst. Dies wurde in Aseri mit Hilfe einer Tür (deren Durchgangsbreite der Breite der Engstelle entspricht) realisiert¹⁷.

¹⁷ Der Durchgang durch Türen unterliegt in Aseri speziellen Regeln, die im Referenzhandbuch [38, S. 18f.] ausführlich dargelegt sind.

Einen großen Einfluss auf die Entleerungszeit des Simulationsprogramms Aseri hat die Auswahl des Bewegungsmodus (vergl. Kap. 5.5). Da es in der Dokumentation der Experimente keine Hinweise auf besondere Anweisungen der Versuchsleiter gibt, besondere Drängelsituationen herbeizuführen, wurde der Bewegungsmodus Entfluchtung gewählt. Die Ermittlung von systematisch zu geringen Evakuierungszeiten mit dem Modus Gefahr in der Sensitivitätsanalyse unterstützt diese Entscheidung.

Weiterhin wurden zur Annäherung der N(t)-Verläufe der Realversuche für die Berechnung mit Aseri Anpassungen der Personengruppeneigenschaften vorgenommen (Tab. 9). Sowohl die Schulter- als auch Brustbreite der Agenten wurden reduziert, ebenso deren Abweichungen. Die experimentellen Untersuchungen wurden mit einer nahezu homogenen Versuchsgruppe (junge, männliche, überwiegend sportliche Berufssoldaten) durchgeführt. Die Versuchsgruppe war deutlich homogener als der von Aseri zugrunde gelegte gesellschaftliche Querschnitt.

Tabelle 9: Parameteranpassung Aseri				
Parameter	${\it Standardeinstellung}$	genutzte Einstellung		
Schulterbreite $/m$	$0,525 \pm 0,035$	$0,500 \pm 0,0100$		
Brustbreite $/m$	$0,315 \pm 0,020$	$0,300 \pm 0,0100$		
Körperfläche $/m^2$	$0,130 \pm 0,00055$	$0,118 \pm 0,00008$		
Gebgeschwindigkeit $/m/s$	1,10 ±	= 0,40		

Alle Szenarien wurden mit Aseri in zehn Läufen durchgerechnet. Zur Auswertung der absoluten Zahlen wurde das arithmetische Mittel aller zehn Simulationsläufe verwendet. Einen Überblick über die Streuung der Ergebnisse findet sich in Appendix B.

Die Programmstruktur von Aseri erlaubt eine maximale Personendichte von $6,0 \text{ P/m}^2$. Aufgrund des projizierten Platzbedarfs der Fußgänger in Aseri ergibt sich ein Platzbedarf zum Simulationsbeginn der Szenarien 1a und 1b von $22,5 \text{ m}^2$, bei einer vorhandenen Fläche von 21 m^2 . Für die Simualtion wird daher die Aufstellfläche auf $7,00 \cdot 4,5 \text{ m}$ vergrößert, um alle 180 P korrekt platzieren zu können.

Bei der Modellierung der Untersuchungsgeometrien in PedGo kommt es entsprechend der räumlichen Diskretisierung zu einem Raster von **0,4 m**-Schrittweiten.

Eine Anpassung der internen Bewegungsparameter wurde nicht vorgenommen. Insbesondere für die Verteilung der Wunschgeschwindigkeit war dies nicht möglich, da die verwendete Beta-Version auf diese Änderung nicht validiert war und Instabilitäten der Programmstruktur nicht ausgschlossen werden konnten.

Alle Szenarien sind systembedingt mit 500 Verteilungen berechnet worden. Entsprechend den Empfehlungen der Dokumentation wurde auf das 95%-Quantil zur Auswertung zurückgegriffen.

Auch im räumlich diskretisierten Modell von PedGo finden sich in der originalen Aufstellfläche der Geometrie 1 lediglich **119 Zellen**. Da eine Person von einer Zelle repräsentiert wird, wird auch für PedGo der Wartebereich auf **187 Zellen** (**4**,**4** · **7**,**00** m) vergrößert.

Bei der Variation der Geometrie 1a im Bereich der Engstelle auf b = 1,60 m kommt es aufgrund des vorgegenenen Diskretisierungsrasters zur Aufhebung der Achsensymmetrie bezüglich der Abszisse. Die Anordnung der Geometrie 1b mit einer Länge der Engstelle von 0,06 m ließ sich aufgrund des Diskretisierungsrasters lediglich auf 0,40 m modellieren. Da eine Zelle mit einer Kantenlänge von 0,4 m auch für Agenten die kleinste diskretisierbare Einheit darstellt, wird davon ausgegangen, dass die Ergebnisslage vergleichbar ist.

4.5.3 Viswalk

Personen werden durch Viswalk kontinuierlich als Zufluss pro Zeiteinheit erzeugt. Dieser Zufluss ist über ein definiertes Zeitintervall konstant. Um zum Simualtionsbeginn exakt 180 P zu platzieren, wurde eine Zuflussstärke von 6480000 P/h mit 10 Zeitschritte/s gewählt. Dies führte zu einem Zufluss von 1800 P/s. Somit wurden nach 0,1 s 180 P in das Modell platziert.

Die Aufnahme der Messwerte erfolgte in Viswalk mit Hilfe einer Messfläche. Mit Hilfe einer solchen Fläche werden simultan zum Simulationsverlauf durch den Nutzer ausgewählte Parameter in eine Auswertungsdatei geschrieben, welche im Nachgang mit Hilfe eines Tabellenkalkulationsprogramms ausgewertet werden kann. Für die vorliegende Masterarbeit wurde der Eintritt eines Individuums auf eine Messfläche (y = 0) gewählt.

Für die rechnerische Untersuchung der Geometrie 1a wurde auch bei Viswalk die Aufstellfläche vergrößert, um Dichten $\geq 4,0$ P zu vermeiden.

Die Entleerungszeit reagiert sehr sensitiv auf die Auswahl der Geschwindigkeitsverteilung. Auf Grundlage der Referenzexperimente wurde in Viswalk ebenfalls die Geschwindigkeitsverteilung angepasst. Von der vorgeschlagenen International Maritime Organization (IMO)-Geschwindigkeitsverteilung für einen Altersbereich von 30-50 Jahren wurde auf eine Verteilung für den Altersbereich von 20-30 Jahren abgewichen. Der Einfluss der Geschwindigkeitsverteilung auf die Entleerungszeit ist in Kap. 5.1 dargestellt.

Alle Szenarien wurden mit Viswalk in zehn Läufen durchgerechnet. Zur Auswertung der absoluten Zahlen wurde das arithmetische Mittel aller zehn Simulationsläufe verwendet. Einen Überblick über die Streuung der Ergebnisse findet sich in Appendix B.

Für die Simulation der Geometrien 1a, 1b und 2 mit Viswalk wurden die Aufstellflächen der Agenten vergrößert, da bei einer Dichte $D \ge 4,0 \text{ P/m}^2$ vor einem unerwarteten Verhalten der Software gewarnt wird. Da der Einfluss der Engstelle und nicht die Startdichte Gegenstand der Untersuchung war, wurde die Aufstellfläche entsprechend angepasst.

4.5.4 Predtetschenski und Milinski

Das dynamische Strömungsmodell nach Predtetschenski und Milinski ist eine anerkannte und in der schutzzielorientierten Bewertung von Gebäuden etablierte Methode. Für die in der vorliegenden Arbeit untersuchten Geometrien wurde zur Einschätzung der Untersuchungsergebnisse sowie als ergänzender Vergleichsansatz ein Predtetschenski-Milinski-Areal (PMA) ermittelt. Die obere Grenze wird hierbei durch die Bewegung von Personen in Winterstraßenbekleidung $(f = 0,125 \text{ m}^2)$ abgebildet, während die untere Begrenzung Personen in Sommer- bzw. Hausbekleidung $(f = 0,100 \text{ m}^2)$ repräsentieren (vergl. auch Tab. 5).

Die Abb. 14 zeigt die Anzahl und Bemaßung der Grundgeometrien für jede Untersuchungsanordnung nach den Vorgaben von Predtetschenski und Milinski [21, S. 69]. Ebenfalls aufgeführt ist die verwendete Bemaßung, die zur Berechnung der Entleerung verwendet wurde. Die Abmaßungen in den einzelnen Anordnungen musste auf die Möglichkeiten der Methodik angepasst werden. So war es beispielsweise in Geo 2 notwendig, die Aufstellfläche der Probanden zu vergrößern, um die benötigte Anzahl Personen platzieren zu können.

Abbildung 13: Beispielhafte Darstellung des Predtetschenski-Milinski-Areals

In allen untersuchten Anordnungen startet die PMA in dem Bereich um **Os** als sehr schmales Band und stellt damit sehr hohe Anforderungen an jeden Vergleich (vergl. Abb. 13). Sie hebt sich ohne jedwede Verzögerung sofort von **O P** ab. Die Methode von Predtetschenski und Milinski unterstellt folglich, dass bereits sehr bald nach Beginn der Entleerung eine Person die Zähllinie überschreitet. Dieser Effekt wäre vermeidbar, wenn als gemeinsamer Startpunkt für den Vergleich diejenige Zeit ausgewählt würde, an der eine oder zwei Person die Zähllinie passieren. In der Folge würden sich die Kurven relativ zur Zeitachse verschieben. Auf eine solche Vorgehensweise wurde bewusst verzichtet, da zu einer vergleichenden Untersuchung zum einen auch die zeitlichen Ränder eines Analysegebietes gehören und zum anderen der hohe Einfluss der Modellgrenzen verdeutlicht wird.

In Tab. 10 ist beispielhaft die Berechnung des PMA anhand direkter Referenzierung der Berechnungsgleichungen sowie konkreter Zahlenwerte nachzuvollziehen. Die Beispielrechnung bezieht sich auf die Geometrie 1a mit der Bemaßung $1,20 \text{ m} \times 4,00 \text{ m}$. Für die weiteren Geometrien wird kein detailierter Rechenweg dargestellt, für die Nachvollziehbarkeit sei auf Abb. 14 verwiesen.

Beschreibung	Einheit	Formel	Somme	erbekleidung	Winter	bekleidung
			Flur	Engstelle	Flur	Engstelle
Personenanzahl	/ P			180		180
Projektionsfläche einzeln f	$/m^2/P$			0,100	(0,125
Projektionsfläche gesamt $\sum f_i$	$/m^2$			18,00	:	22,50
Breite b	m		7,00	1,20	7,00	1,20
Länge <i>l</i>	m		4,00	4,00	4,00	4,00
Dichte D	m^2/m^2	[21, S. 47; Gl. 4]		0,64		0,80
Bewegungsmodus			(Gefahr	G	efahr
Bewegungsintensität q_{erf}	m/min	[21, S. 70; Gl. 21]	12,14	70,82	12,00	70,00
Bewegungsintensität q_{\max}	m/min		12,42	13,32	12,42	13,32
${ m Bewegungsintensit}$ ät $q_{ m res}$	m/min		12,14	10,38	12,00	10,38
Dichte D	m^2/m^2		0,66	0,21	0,62	0,21
Gehgeschwindigkeit v	m/min	[21, S. 291 ff.; Tab. Ho-	18,68	38,57	19,35	38,57
		rizontale Wege]				
$\mathbf{Durchlassfähigkeit} \ Q$	m ² /min	[21, S. 61; Gl. 14]	85,65	12,41	83,98	12,41
Stromlänge l _{Strom}	m	[21, S. 96]	3,93	0,00	5,18	0,00
Zeit Kopfteil t _{Kopf}	min		0,00	0,08	-0,06	0,08
Zeit Kopfteil t _{Schluss}	min		0,21	0,08	0,21	0,08
Verzögerung τ	min	[21, S. 98; Gl. 37]	0,00	1,24	0,00	1,55
Zeit pro Wegelement t_{res}	min		0,21	1,32	0,21	1,62
Rückstaugeschwindigkeit v'_{Stau}	m/min	[21, S. 96; Gl. 35]	0,00	23,02	0,00	24,63
Stauabbaugeschwindigkeit v_{Stau}	m/min	[21, S. 96; Gl. 36]	10,52	11,31	10,52	11,31
Staulänge l _{Stau}	m	[21, S. 99; Gl. 39]	0,00	2,17	0,00	2,90
Stauzeit Kopfteil t _{Stau,Kopf}	min		0,00	0,08	-0,06	0,02
Stauzeit gesamt $t_{Stau,ges}$	min		0,21	1,53	0,21	1,83

Tabelle 10: Berechnungsbeispiel für Geo 1a - $1,20 \text{ m} \times 4,00 \text{ m}$

Abbildung 14: Predtetschenski und Milinski: Berechnungsschema der Geometrien mit Grundgeometrien nach [21]. Die betrachteten Geometrien setzen sich aus den Grundgeometrien zusammen und werden durch logische Verknüpfung nacheinander berechnet.

5 Sensitivitätsanalyse

Komplexe Systeme reagieren unterschiedlich empfindlich auf die Veränderung von Eingabeparametern. In diesem Kapitel wird die Einflussnahme ausgewählter Einflussgrößen auf die Ergebnisse untersucht. Es handelt sich hierbei um die Auswirkung der Geschwindigkeitsverteilung, das Vorhandensein eines zusätzlichen Entnahmebereichs, die Treppenlänge und den Querschnitt nach einer Personenstromvereinigung.

Die Analyse wurde mit dem Simulationsprogramm Visum durchgeführt. Die gewonnenen Erkenntnisse wurden - sofern möglich - auf die anderen verwendeten Programme übertragen.

Die beiden systematisch bedingten Spezialfälle des Einflusses der Position der Messpunkte (PedGo, Abschnitt 5.6) sowie des Bewegungsmodus (Aseri, Abschnitt 5.5) wurden seperat untersucht und bewertet.

5.1 Einfluss der Geschwindigkeitsverteilung (Viswalk)

Abb. 15 stellt den Einfluss der gewählten Geschwindigkeitsverteilung anhand des Simulationsprogramms Viswalk dar. Die sensitive Abhängigkeit der Entleerungszeit von der gewählten Geschwindigkeitsverteilung ist sehr gut zu erkennen und gibt den Wissensstand¹⁸ der Literaturrecherche wieder.

In Viswalk sind standardmäßig die Verteilungen der Wunschgeschwindigkeiten für einen Altersbereich von 30 - 50 Jahren nach Geschlecht differenziert implementiert. Die Werte beruhen auf den Untersuchungen der IMO. Zur differenzierten Analyse wurden zwei weitere Verteilungen implementiert und die Geometrie 1a mit den Verteilungen für die Altersgruppen ≤ 30 Jahre, 30 - 50 Jahre und ≥ 50 Jahre berechnet.

Altersgruppe	Geschwindigkeit $/m/s$	Geschwindigkeit $/km/h$
$\begin{array}{l} {\rm M\ddot{a}nnlich} \leq 30 \\ {\rm Weiblich} \leq 30 \end{array}$	1,11 - 1,85 0,93 - 1,55	3,97 - 6,67 3,48 - 5,58
$\begin{array}{l} \mathrm{M\ddot{a}nnlich} \leq 30 \geq 50 \\ \mathrm{Weiblich} \leq 30 \geq 50 \end{array}$	0,97 - 1,62 0,71 - 1,19	3,27 - 5,83 2,56 - 4,28
$\begin{array}{l} {\rm M\ddot{a}nnlich} \geq 50 \\ {\rm Weiblich} \geq 50 \end{array}$	0,84 - 1,40 0,56 - 0,94	3,02 - 5,04 2,02 - 3,38

Tabelle 11: Wunschgeschwindigkeit in der Ebene nach IMO MSC.1/Circ. 1238 [23, S. 6 f.]

Abbildung 15: Geo 1a - Einfluss der Geschwindigkeitsverteilung (Viswalk)

Die Vergleichsexperimente wurden mit jungen Wehrpflichtigen (Geo 1) oder Studenten (Geo 2) durchgeführt, daher ist für die in dieser Arbeit besprochenen Untersuchungen die Geschwindigkeitsverteilung für ein Alter ≤ 30 Jahre benutzt worden.

Eine entsprechende Anpassung in PedGo war nicht möglich, da für die Aufnahme der Passagezeiten bestimmter Messlinien eine von Tim Meyer-König modifizierte Version von PedGo

¹⁸ So ist beispielsweise nach Kretz [55, S. 6 f.] ohne Anpassung der Wunsch- oder Maximalgeschwindigkeiten kaum eine Übereinstimmung mit empirischen Beobachtungen zu erzielen.

verwendet wurde. Diese Version ist eine vorläufige, auf die Bedürfnisse dieser Arbeit modifizierte Betaversion. In dieser Version konnte aus Stabilitätsgründen für den Programmdurchlauf keine Manipulation der Geschwindigkeitsverteilung durchgeführt werden, weshalb der normalverteilte Standardwert von 0,36 - 2,00 m/s mit einer Standardabweichung von 0,37 benutzt wurde.

5.2 Einfluss des Entnahmebereichs der Agenten am Simulationsrand (Viswalk)

Abb. 16 zeigt den Einfluss eines zusätzlichen Auslaufbereichs für die Agenten am räumlichen Simulationsrand auf die Entleerungszeit. Es zeigt sich, dass die Entleerung ohne zusätzlichen Auslaufbereich für die simulierte Population eine längere Zeit in Anspruch nimmt. Dies liegt in der Interaktion der Individuen in den beiden Bereichstypen begründet.

Erreichen die Agenten den Außenbereich, so bleiben diese stehen und werden (modellbedingt) aufgelöst. In Simulationen wird aus Gründen der Performance und der Reduktion benötigter Rechenleistung auf diese Weise verfahren. Der zusätzlich modellierte Bereich ist folglich noch expliziter Bestandtteil des Simulationsgebiets. Denn auch in empirischen Untersuchungen lösen sich die Probanden am Ende des Untersuchungsgebietes nicht auf, sondern bewegen sich in eine bestimmte Richtung weiter.

Sowohl in der Variation der Breite als auch in der Länge der Engstelle hat die Modellierung einer solchen zusätzlichen Fläche eine erhebliche Auswirkung auf die Entleerungszeit. Es konnte eine Verlängerung der benötigten Zeit bis zur vollständigen Entleerung bei Verzicht dieser Fläche um bis zu 20% beobachtet werden (vergl. Abb. 16(b)).

Um der Auslaufbewegung nach dem Erreichen einer Zielfläche Rechnung tragen zu können, wurden alle Personenzählungen in einem ausreichend großem Abstand $(>5\,m)$ zu den sicheren Bereichen vorgenommen. War dieses Vorgehen nicht möglich, so wurden die Außenbereiche außerhalb der Zählumgebung modelliert, d.h. das Verhalten der Agenten in diesem Bereich hat keine Auswikrung mehr auf die Passagezeiten der Messflächen.

Abbildung 16: Geo 1a - Einfluss des Entnahmebereichs am Simulationsrand (Viswalk)

walk)

5.3 Einfluss der Treppenlänge bzw. des Steigungswinkels (Viswalk)

Die Abb. 18 stellt die Passagezeit an der Messlinie anhand des Steigungswinkels ϑ einer Treppe dar .

Abbildung 18: Einfluss der Treppenlänge bzw. des Steigungswinkels im Simulationsprogramm Viswalk auf die Entleerungszeit der Anordnung Geo 4

Parameter, die zur Ermittlung des Einflusses der Treppenlänge l_{Treppe} und des Steigungswinkels ϑ variiert wurden, sind in Abb. 19 dargestellt.

Abbildung 19: Geo 4 - Steigungswinkel ϑ und Treppenlänge l_{Treppe} (Viswalk)

Es zeigt sich, dass über den Steigungswinkel kein Einfluss auf die Passagezeit der Zähllinie ausgeübt wird. Dies begründet sich dadurch, dass in Viswalk die normale Wunschgeschwindigkeit entlang der Steigung einer Treppe interpretiert wird. In der senkrechten 2D-Projektion hat der Agent die Wunschgeschwindigkeit $v_0 \cdot cos(\vartheta)$, wobei v_0 die Wunschgeschwindigkeit in der Ebene und ϑ der Steigungswinkel der Treppe ist. Das sich im Simulationsergebnis kein Effekt feststellen lässt, resultiert aus der Geschwindigkeitsreduzierung aufgrund der Stromvereinigung. Durch die Vereinigung der beiden Personenströme und des daraus resultierenden Kapazitätsengpasses wird die Gehgeschwindigkeit für alle Parametervariationen so weit reduziert, so dass sich die Passagezeiten aufgrund der vertikalen Höhendifferenz nicht verändern. Eine zusätzliche Geschwindigkeitsreduktion wäre in Viswalk über die Funktionen Walking Behavior und Area Walking Type möglich, womit einer Fläche eine spezielle Geschwindigkeitsfunktion zugewiesen werden kann. Von dieser Möglichkeit wurde jedoch aus Gründen der Vergleichbarkeit mit den anderen Simulationsprogrammen kein Gebrauch gemacht.

5.4 Einfluss des Querschnitts nach dem Zusammenfluss (Viswalk)

Die Abb. 20 vergleicht den Einfluss der Abstrombreite für das zweite und dritte Szenario. Für beide Formen der Personenstromvereinigung zeigt sich ein maßgeblicher Einfluss. Insbesondere bei kleinen Querschnitten hat die Kapazität des Querschnitts der Vereinigung einen hohen Einfluss. Bereits kleine Erweiterungen der Abströmfläche sorgen sowohl bei der T- als auch der Y-Form für eine schnellere Entleerung.

Mit zunehmender Abstrombreite nimmt der Vorteil der schnelleren Entleerung der Y-Anordnung ab, entspricht der Abstromquerschnitt dem Zustromquerschnitt ist eine Entleerung im T-Anordnung sogar geringfügig schneller.

Abbildung 20: Geo 2 / 3 - Einfluss des Querschnitts der Abstromfläche (Viswalk)

5.5 Einfluss der Bewegungsmodi auf die Entleerungszeit (Aseri)

In der Abb. 21 ist der Einfluss des gewählten Bewegungsmodus bei der Simulation mit Aseri auf die Entleerungszeit dargestellt. Der Standard-Eingabewert in Aseri ist die Bewegungsart im Modus der Entfluchtung. Hierbei werden Mindestabstände zwischen Agenten sowie zu Wänden und Hindernissen eingehalten. Nur in bestimmten Sonderfällen wie beispielsweise bei sehr hohen Dichten wird diese Vorgabe reduziert. Im Bewegungsmodus Gefahr hingegegen ist der Kontakt im Sinne von Berührungen zwischen Personen und Hindernissen grundsätzlich möglich [38, S. 18].

Abbildung 21: Geo 1b - Einfluss der Bewegungsmodi (Aseri)

Die Simulation im Gefahrenmodus ermöglicht durch geringere Abstände zwischen Agenten und Hindernissen höhere spezifische Personenflüsse. Gefahr ist hierbei jedoch nicht mit Situationen aggressiven Verhaltens, Drängeln oder der Inkaufnahme von Verletzungen oder Stürzen gleichzusetzen.

Für die vorliegende Untersuchung wurde der Bewegungsmodus Entfluchtung gewählt, da es bei der Auswertung der empirischen Vergleichsdaten keine Hinweise auf Anweisungen des Experimentator gab, solche Situationen zu forcieren. Auch wenn Experimente an Engstellen in aller Regel mit körperlichen Berührungen ablaufen, so wären die mit Aseri ermittelten Werte im Modus Gefahr systematisch zu niedrig ausgefallen.

5.6 Einfluss der Lage der Logpoints (PedGo)

Die Sensitivität der Entleerungszeit der Anordnung Geo 1a auf die veränderte Lage der Zähllinien im Simulationsprogramm PedGo wird in Abb. 22 dargestellt.

Die für die vorliegende Untersuchung verwendete Version des Simulationsprogramms PedGo wurde freundlicherweise von Tim Meyer-König um den zusätzlichen Zelltyp der virtuellen Tür erweitert, anhand deren der Personenfluss über der Zeit aufgezeichnet werden konnte (Logpoints), ohne das die auf diesem Zelltyp eine Reduktion der Gehgeschwindigkeit in Kauf genommen werden muss¹⁹. Die virtuellen Türen haben keine weiteren, beeinflussenden Zelleigenschaften.

Aufgrund von Vor- und Zurückbewegungen von Agenten und dem Abwarten auf den nächsten Updateschritt bei hohen Dichten, kommt es im Bereich hoher Dichten (folglich in dem Bereich vor Engstellen und bei der Vereinigung von Personenströmen) zu einer Mehrfachzählung der Agenten und damit zu einer verfälschten Datenlage. Dies bestätigt sich durch die erkennbar reduzierten Passagezeiten, wenn die Zähllinie direkt am Eingang der Engstelle angeordnet war.

Um diesen Effekt zu vermeiden, wurden die Zähllinien in die Mitte der auszuwertenden Bereiche angeordnet und die Passage über die Differenz der sich auf den Flächen befindlichen Agenten ermittelt. Dadurch konnte der Effekt der Mehrfachzählung eines Agenten deutlich reduziert werden. Gänzlich ausgeschlossen werden konnte der Effekt jedoch nicht. Erreichte die Personenzählung den Wert der Startpopulation, wurde die Entleerung als beendet betrachtet und die Zählung abgebrochen.

Abbildung 22: Geo 1a - Einfluss des Lage der Logpoints (PedGo)

¹⁹ Türen stellen im Verlauf von Fluchtwegen eine Engstelle bzw. einen Kapazitätsengpasses dar. Daher wird auf dem Zelltyp "Tür" in PedGo die Geschwindigkeit der Agenten halbiert.

5.7 Zusammenfassung der Sensitivitätsanalyse

Wie sich in der ausführlichen Untersuchung der Sensitivität der verwendeten Rechenmodelle auf die Ergebisse gezeigt hat, gibt es eine Vielzahl an Eingangsgrößen, die auf die Ausgabegrößen komplexer Systeme Einfluss nehmen.

Eine erhebliche Auswirkung auf die Entleerungszeit nimmt erwartungsgemäß die Auswahl der Verteilung der Gehgeschwindigkeit sowie - sofern konfigurierbar - die Wahl der Bewegungsmodi. Zur Ermittlung aussagekräftiger Simulationsergebnisse bedarf es einer zuverlässigen Aussage über die zu erwartende (demographische) Zusammensetzung der Population, für welche die Geometrie ausgelegt werden soll.

Es konnte weiterhin gezeigt werden, dass eine Messung an der räumlichen Simulationsgrenze eine Auswirkung auf das Rechenergebnis hat. Um diesen Einfluss für die Ergebnisse dieser Arbeit zu minimieren, wurde eine zusätzliche Auslaufzone für die Agenten modelliert, die als sicherer Bereich angesehen wird. Die Auflösung der modellierten Personen wurde somit räumlich vom Bereich der Zähllinien entfernt.

Der untersuchte Einfluss der Lage der Logpoints im Simulationsprogramm PedGo hat einen erheblichen Einfluss auf die Ermittlung der Evakuierungszeit. Liegen die Zähllinien näher am stromabwärtigen Raum und stellt dieser, wie in der Untersuchungsgeometrie 1a und 1b eine Reduzierung der Kapazität dar, kommt es zu hohen Dichten im Zählbereich. Es entstehen verstärkt Pendelbewegungen, die trotz Differenzstrommessung zwischen beiden Flächen zu einem Messfehler führen, da mehr Agenten detektiert werden, als tatsächlich die Linie passieren. Um diesen Effekt zu minimieren, wurden die Aufnahmelinien der Zählungen in die Mitte der Räume verlegt.

6 Auswertung und Interpretation

Im folgenden Kapitel werden die mit Hilfe der im Abschnitt 3 beschriebenen Methodik erzielten Ergebnisse analysiert und interpretiert. Für die Geometrien 1a, 1b und 2 wird zudem anhand empirischer Daten²⁰ der Vergleich zur Realität gesucht und infolge die Abweichung in Form eines gemittelten Parameters zu quantifiziert.

Für die vorliegenden Ergebnisse wurden ≈ 150 Simulationen durchgeführt und ausgewertet. Eine Übersicht finden sich in Appendix C. Die Sensitivität der Ergebnisse bezüglich:

- Einfluss der gewählten Geschwindigkeitsverteilung,
- Einfluss des Entnahmebereichs der Agenten aus der Simulation,
- Einfluss der Lage der Zähllinien (Logpoints),
- Einfluss der Treppenlänge bzw. des Steigungswinkels,
- Einfluss des Querschnitts nach dem Zusammenfluss,
- Einfluss des gewählten Bewegungsmodus.

wurde in (Kap. 5 untersucht.

6.1 Geo 1 - Bottleneck

Im Folgenden werden die Ergebnisse der Breiten- und Längenvariation der Engstellenanordnung dargestellt und interpretiert.

6.1.1 Geo 1a - Variation der Breite des Bottlenecks

Generell zeigen alle durchgeführten Simulationen ein vergleichbares Verhalten und erzielen für den N(t)-Verlauf ein mit den empirischen Beobachtungen korrespondierendes Ergebnis. Sowohl PedGo als auch Viswalk errechnen für die Breiten b = 1,20 m und 1,60 m leicht längere Entleerungszeiten als die Experimentaldaten, wohingegen der von Aseri berechnete Verlauf dem Experimentalverlauf spätestens ab 60 s vorauseilt.

Die Modelle der Simulationsprogramme scheinen auf konservative Flusswerte hin kalibirieren zu sein (vergl. Abb. 23(d)). Die untersuchten Ergebnisse entsprechen sowohl den Flüssen der Referenzexperimente als auch den empirischen Erwartungen²¹. Die maximalen Abweichungen zwischen Empirie und Simulation für den Zeitpunkt, an dem alle Agenten die Messlinie passiert haben $(t_{100\%})$ variieren von -8,5% (Geo 1a - 160x400, Aseri) bis 20% (Geo 1a -

²⁰ Die Daten aus den Realexperimenten für Geo 1a und 1b entstammen den Experimenten des Forschungsvorhabens DFG-Grant No. KL 1873/1-1 und SE 1789/1-1 der Deutschen Forschungsgemeinschaft (DFG), die mit freundlicher Genehmigung von Herrn Prof. Dr. Armin Seyfried zur Verfügung gestellt wurden (vergl. [56], [34]). Die Experimentalergebnisse für Geo 2 wurden freundlicher Weise von Herrn Prof. Dr. Armin Seyfried und Herrn M. Eng. Jun Zhang zur Verfügung gestellt (vergl. [30]).

²¹ Beispielsweise sei hier auf die Untersuchungen von Hoogendoorn und Daamen [7, S. 158]; Seyfried et.al. [34, S. 6]; Fruin [33, S. 56 ff.] und Kretz [35, S. 16] verwiesen.

120x400, Viswalk/PedGo). Keine der genutzten Methoden errechnet jedoch einen langsameren Entleerungsverlauf, als er mit Predtetschenski und Milinski in Winterbekleidung ermittelt wurde.

Werden lediglich die absoluten Entleerungszeiten betrachtet, so liefert PedGo für die Abmaßungen $1,60 \text{ m} \times 4,00 \text{ m}$ (Abb. 23(b)) und $2,00 \text{ m} \times 4,00 \text{ m}$ (Abb. 23(c)) die zutreffensten Ergebnisse. Bei $1,20 \text{ m} \times 4,00 \text{ m}$ liegen sowohl PedGo als auch Viswalk in deutlichem Abstand zur Empirie, während Aseri lediglich eine Abweichung von 2 s errechnet (Abb. 23(a)). Diese Form der Analysemethodik eignet sich aufgrund des hohen Informationsverlustes lediglich bedingt zur Bewertung der Simulationsmodelle.

Abbildung 23: Geo 1a - Einfluss der Bottleneckbreite

Der N(t)-Verlauf der Experimente zeigt eine leicht konkave Charakteristik, deren Steigung gegen Beobachtungsende abnimmt (vergl. Abb. 24(a)). Dieses Spezifikum wird vor allem von Viswalk sehr gut nachgebildet (Abb. 24(d)), wohingegen die Programme Aseri und PedGo tendenziell einen linearen N(t)-Verlauf ermitteln (Abb. 24(b) und 24(c)).

In Viswalk ist die Flussrate von der Wunschgeschwindigkeit abhängig, welche in die driving force $(\vec{f}_{\alpha}^{drv})^{22}$ einbezogen wird. Diese Einflussnahme ist höher, als sie durch Abstoßungskräfte zwischen den Agenten kompensiert wird. Somit werden die möglichen Abstände zwischen den Fußgängern geringer (= steigende Personendichte) und der Fluss steigt an. Sinkt die Personendichte im letzten Drittel des Beobachtungszeitraums jedoch wieder, sinkt auch die Motivation

²² Die driving force bestimmt als zielgerichtete Bewegungsgröße maßgeblich das Social-Force-Model, denn $\vec{f}_{\alpha}^{drv} = m_{\alpha} \cdot \frac{v_{\alpha}^{0}(t)\vec{e}_{\alpha}^{o}(t) - \vec{v}_{\alpha}(t)}{\tau_{\alpha}}$. Hierbei sind $v_{\alpha}^{0}(t)\vec{e}_{\alpha}^{o}(t)$ die gewünschte Bewegungsrichtung, $\vec{v}_{\alpha}(t)$ die aktuelle Gehgeschwindigkeit und τ_{α} die Relaxationszeit (vergl. Gl. 3.15) [57, S. 6].

hohe Geschwindigkeiten zu gehen, um der Situation mit der geringen sozialen Distanz zu entgehen und in der Folge sinkt der Fluss.

Gerade in den Bemaßungen $1,20 \text{ m} \times 4,00 \text{ m}$ und $1,60 \text{ m} \times 4,00 \text{ m}$ kommt es in den ersten beiden Dritteln der Beobachtungszeit bei PedGo zu deutlichen Abweichungen vom Verlauf des Experimentes. Im Endergebnis erreicht PedGo jedoch aufgrund des Steigungsabfalls bei Viswalk im letzten Drittel die selbe Absolutzeit wie Viswalk in allen Variationen der Breite.

Abbildung 24: Geo 1a - Einfluss der Bottleneckbreite

In Tab. 13 sind die Ergebnisse der durchgeführten Simulationen mit der Variation des geometrischen Parameters b gegenüber gestellt. Zusätzlich wird mit Hilfe der in Abschnitt 3.4 beschriebenen Methodik die Abweichung der mit den Simulationsmodelle errechneten Kurven quantifiziert und parametrisiert. Die euklidische Distanz ϵ beträgt für alle Simulationsergebnisse für die Maße 1,20 m × 4,00 m arithmetisch gemittelt $\epsilon_{ges} = 0,16$, die Simulationen liegen folglich in geringer, quantitativer Distanz zu den Experimentaldaten ($\epsilon_{Aseri} = 0,09$, $\epsilon_{PedGo} = 0,29$, $\epsilon_{Viswalk} = 0,11$).

Bemaßung	Software	$t_{100\%}/{ m s}$	ϵ	arphi
$1,20{\rm m} \times 4,00{\rm m}$	Aseri	81	0,09	1,00
	PedGo	99	0,29	0,99
	Viswalk	99	0,11	1,00
1,60 m × 4,00 m	Aseri	65	0,06	1,00
	PedGo	75	0,25	0,99
	Viswalk	82	0,11	1,00
$2,00 \mathrm{m} \times 4,00 \mathrm{m}$	Aseri	55	0,07	1,00
	PedGo	62	0,25	0,99
	Viswalk	64	0,08	1,00

Tabelle 13: Vergleich der berechneten und der empirischen N(t)-Verläufe für Geo 1a

Ist das innere euklidische Produkt $\varphi \geq 0,99$, unterscheidet sich die errechnete Kurve lediglich durch einen konstanten Faktor $(1 - \epsilon)$ von den empirischen Daten. Werden die simulierten Werte durch diesen Wert dividiert, ergibt sich ein korrigierter, den Experimentaldaten angenäherter Kurvenverlauf (vergl. Abb. 51(a) in Appendix F). Für jede Variation des Parameters b beträgt das innere euklidische Produkt $\varphi \geq 0,99$, d.h. die simulierten Ergebnisse verhalten sich qualitativ identisch zu den Experimentaldaten.

Die Abb. 25 zeigt Screenshots 30 s nach Simulationsbeginn für die Breiten b = 1,20 m und b = 2,00 m. Es ist deutlich zu erkennen, dass alle Rechenmodelle bei b = 2,00 m die Agenten in mehreren Spuren nebeneinander laufen lassen, während dies bei einer Gangbreite von b = 1,20 m sichtbar reduziert ist. Es fällt auf, dass in den Screenshots der Experimentalaufzeichnungen eine deutlich variablere Personenzahl in der Breite des Querschnitts als in den rechnerischen Modellen möglich ist. Diese Beobachtung ist für beiden Gangbreiten gültig.

Auffällig ist weiterhin, dass im Simulationsprogramm Aseri die Engstelle mit der Bemaßung $1,20 \text{ m} \times 4,00 \text{ m}$ von lediglich einem Agenten in der Breite passiert wird, wohingegen sowohl in der Empirie als auch in PedGo und Viswalk mehrere Personen nebeneinander möglich sind. Es ist zu vermuten, dass diese Beobachtung aus dem gewählten Bewegungsmodus resultiert. Für die Simulation wurde der Modus Entfluchtung gewählt, da zum einen in den Auswertungen der Experimente keine Hinweise auf eine durch die Experimentatoren forcierte Drängeloder Kontaktsituation gefunden werden konnten. Zum anderen lagen die von Aseri berechneten Entleerungszeiten im Entfluchtungsmodus bereits am unteren Ende des Beobachtungszeitraums (vergl. Abb. 5.5). Im Bewegungsmodus Entfluchtung werden Mindestabstände zwischen Individuen untereinander sowie zu Hindernissen und anderen Objekten eingehalten, die erst im Bereich sehr hoher Dichten reduziert werden.

In der beschriebenen Anordnung befindet sich der Bereich der hohen Dichte vor dem Eingang zur Engstelle. Im Verlauf der Engstelle ist die Personendichte sehr gering, wodurch die Mindestabstände zur begrenzenden Wand eingehalten werden und bei Querschnitt von 1,20 m nicht genügend Platz zur Verfügung steht, um sowohl die Schulterbreite als auch den territorialen Abstand zwischen den Agenten einhalten zu können²³. Aufgrund des beschriebenen Gänsemarschs liegt die Vermutung nahe, dass der Entleerungsprozess mit Aseri die höchste Zeit benötigt. Die Auswertung des N(t)-Verlaufes widerspricht dieser Annahme, folglich muss sich die Geschwindigkeit über der Länge der Engstelle deutlich erhöhen, um einen gleichen Personenfluss zu ermöglichen (vergl. Abb. D.49). Empirisch wurde im Bereich vor der Engstelle

²³ Zum Einfluss des Bewegungsmodus vergl. Abb. 21.

(a) Experiment bei $t = 30 \, \text{s}$ mit $b = 1,20 \, \text{m}$

(c) Aseri bei $t=30\,\mathrm{s}$ mit $b=1,20\,\mathrm{m}$

(e) PedGo bei $t=30\,\mathrm{s}$ mit $b=1,20\,\mathrm{m}$

(g) Viswalk bei t = 30 s mit b = 1,20 m

(b) Experiment bei $t = 30 \,\mathrm{s}$ mit $b = 2,00 \,\mathrm{m}$

(d) Aseri bei $t = 30 \,\mathrm{s}$ mit $b = 2,00 \,\mathrm{m}$

(f) PedGo bei t = 30 s mit b = 2,00 m

(h) Viswalk bei t = 30 s mit b = 2,00 m

Abbildung 25: Geo1a- Screenshots der situativen Darstellungen bei $30\,s$ für die Bottleneckbreiten $1,20\,m$ und $2,00\,m$

eine Geh
geschwindigkeit von $0,3\,m/s$ und im Verlauf der Engstelle von
 $\approx 1,00\,m/s$ beobachtet [7, S. 152].^24

²⁴ Eine direkte Übertragung der Erkenntnisse muss jedoch unter Vorbehalt stattfinden. Vor allem im Hinblick auf die Anzahl der teilnehmenden Probanden und der Homogenität der Versuchsgruppe gibt es deutliche Unterschiede [7, S. 149]. Vor einer abschließenden Beurteilung sollte die Sensitivität der Ergebnisse auf diese Einflussparameter untersucht werden.

6.1.2 Geo 1b - Variation der Länge des Bottlenecks

Die Simulationsergebnisse verhalten sich bei allen benutzten Programmen in qualitativer Hinsicht so, wie es aufgrund der empirischen Beobachtungen erwartet wurde. In den absoluten Entleerungszeiten $t_{100\%}$ weichen die Resultate von -14,7% (Geo 1b - $2,00 \text{ m} \times 4,00 \text{ m}$, Aseri) bis 3,2% (Geo 1b - $1,20 \text{ m} \times 4,00 \text{ m}$, Viswalk) von den empirischen Werten ab und reproduzieren somit den realen N(t)-Verlauf mit einer geringen Abweichung zu den empirischen Beobachtungen. Der Ergebnisse liegen eng bei den Versuchsergebnissen (Abb. 26).

Abbildung 26: Geo 1b - Einfluss der Bottlenecklänge

Markant ist, dass sich bei der Bemaßung $1,20 \text{ m} \times 0,06 \text{ m}$ sowohl die Empirie als auch die simulierten Daten außerhalb der PMA befinden (Abb. 26(a)). Bereits bei der Verlängerung des Bottlenecks auf $1,20 \text{ m} \times 2,00 \text{ m}$ verschieben sich die Ergebnisse in den erwarteten Bereich der PMA (Abb. 26(b), 26(c)).

Die größte Auffälligkeit ist der konservative zeitabhängige N(t)-Verlauf des PedGo-Ergnisses, der bereits bei den Variationen der Breite (Abb. 26(c)) zu erkennen war. Absolut betrachtet wird mit PedGo die gleiche Evakuierungszeit erreicht. Dies ist mit dem linearen Anstieg der PedGo-Kurve zu begründen, während die empirische Beobachtung einen konkaven N(t)-Verlauf beschreibt. Ein ähnliches Phänomen tritt bei der Betrachtung der Aseri-Kurve zutage: die Simulation mit Aseri beschreibt ebenfalls einen nahezu linearen Anstieg, allerdings verläuft dieser deutlich steiler, als dies bei PedGo der Fall ist. Somit ist die Entleerung mit Aseri im Vergleich um 7,9% (Abb. 26(b)) und 14,7% (Abb. 26(c)) schneller.

Wird die Länge des Bottlecks variiert, sind die gemessenen spezifischen Flüsse ebenfalls in einem konservativen Annahmebereich und deckungsgleich mit der derzeitigen empirischen Datenlage^{21,25}. Durch die kürzere Engstelle ist der Fluss erkennbar höher als durch die beiden längeren Variationen (Abb. 26(d)). Jack Liddle et.al. haben in [58, S. 14] gezeigt, dass bei den Abmaßen $1,20 \text{ m} \times 0,06 \text{ m}$ die Dichte vor Eintritt in die Engstelle signifikant niedriger und die Geschwindigkeit höher ist. Durch die extrem kurze Ausdehnung des Engpasses, können die Fußgänger das Bottleneck in einem Schritt passieren. Während eine seitliche Ausgleichsbewegung bei den Längen 2,00 m und 4,00 m durch die seitliche Wandbegrenzung ausgeschlossen ist, wird dies bei der sehr geringen Länge von 0,06 m durch die fehlende Begrenzung in Ordinatenrichtung ermöglicht²⁶. Dieser Effekt ist repräsentativ in Abb. 28(b) dargestellt. Bei l = 0,06 mpassieren 3 P gleichzeitig die Engstelle, während sich eine Person direkt nach der Passage seitlich ausdreht. Bei l = 4,00 m bilden sich zwei geordnete Reihen aus und keine Person zwängt sich durch die Engstelle. Dieses Phänomen ist nicht über den gesamten Experimentalverlauf zu beobachten, tritt jedoch in regelmäßigen Abständen auf.

Abbildung 27: Geo 1b - Einfluss der Bottlenecklänge

Durch den erhöhten Fluss wird die Entleerungszeit erkennbar beeinflusst. Abb. 27(a) zeigt eine deutlich kürzere Reisezeit für die Länge l = 0,06 m (79 s) als für die Länge l = 2,00 m (89 s). Dieser Effekt wird durch das Simulationsprogramm Viswalk sehr gut, wenn auch mit etwas geringerem Abstand zwischen l = 0,06 m und l = 2,00 m, abgebildet (Abb. 27(d)).

Auch PedGo reproduziert die Zunahme der Evakuierungszeit mit der Länge des Bottlecks, allerdings erhöht sich hier die Entleerungszeit zwischen l = 2,00 m und l = 4,00 m noch einmal

²⁵ Weiterhin wurde der Einfluss der Länge einer Engstelle detailliert von Hoogendoorn und Daamen [7] untersucht.

²⁶ Diese Beobachtung wird durch die aufgezeichnete Trajektorien des Experiments verdeutlicht, wie sie im Beitrag von Seyfried und Schadschneider [54, S. 555, Abb. 10d, e, f] dargestellt sind.

um $\approx 8\%$. Diese Differenz (4s) resultiert aus dem Beginn der Simulation, da bei l = 2,00 mder erste Agent die Zähllinie nach 6s, bei l = 4,00 m hingegen erst nach 10s passiert. Da sich sowohl bei der Analyse des Minimallaufs (6s) als auch des Maximallaufs (7s) deutlich geringere Passagezeiten des ersten Agenten zeigten, wird von einem Zusammenhang mit der Auswahl im 95%-Quantil ausgegangen. PedGo bildet folglich den beschriebenen Zusammenhang sehr realitätsnah ab, worauf ebenfalls die sehr geringe euklidische Distanz ϵ und das gut getroffene euklidische innere Produkt φ hindeuten (vergl. Tab. 14).

Auffällig ist, dass das Simulationsprogramm Aseri diesen Effekt nicht zu reproduzieren scheint. Dieses Ergebnis liegt in der Modellcharakteristik begründet. In Aseri können die Agenten nicht in einem Zeitschritt (0,5 s) zwei Ziel- oder Orientierungspunkte nacheinander passieren. Dies bedeutet für die vorliegende Geometrie mit l = 0,06 m, dass ein Agent nach dem Passieren der Messlinie (y=0) spätestens am Ausgang des Bottlenecks anhalten muss und sich erst im darauf folgenden Zeitschritt weiterbewegen kann. Dadurch kann der Agent einen Teil seiner möglichen Laufstrecke nicht nutzen. Türen bzw. Orientierungspunkte müssen in Aseri daher mind. 0,3 m auseinander liegen - da jedoch für die Messung der N(t)-Kurve Türen genutzt wurden, kommt es zu dieser ungünstigen Darstellung [38, S. 18 f.].

Tabelle 14. Vergleichte	ter bereenneten	und der empiri	$\frac{1}{2} \left(\frac{1}{2} \right)^{-1} = \frac{1}{2} \left(1$	
Bemaßung	Software	$t_{100\%}/{ m s}$	ϵ	arphi
$1,20 \mathrm{m} \times 0,06 \mathrm{m}$	Aseri	79	0,08	1,00
	PedGo	77	0,13	1,00
	Viswalk	97	0,14	1,00
$1,20{\rm m} \times 2,00{\rm m}$	Aseri	82	0,07	1,00
	PedGo	89	0,04	1,00
	Viswalk	87	0,11	1,00
$1,20{ m m} imes 4,00{ m m}$	Aseri	81	0,08	1,00
	PedGo	96	0,16	1,00
	Viswalk	98	0,04	1,00

Tabelle 14: Vergleich der berechneten und der empirischen N(t)-Verläufe für Geo 1b

In Tab. 14 sind die Ergebnisse der durchgeführten Simulationen mit der Variation der geometrischen Länge I gegenüber gestellt. Durch die mathematische Vergleichsmethode werden die Abweichungen des Rechenmodells gegenüber der Empirie gleichermaßen gewichtet behandelt und die Information der Streuung der Kurvenwerte umeinander verschwindet.

Die ermittelten euklidischen Distanzen fallen sehr gering aus ($\leq 0,16$), was auf eine geringe Distanz der Modellwerte zu den Experimentalwerten schließen lässt. Die inneren euklidischen Produkte stellen ausnahmslos den Idealwert $\varphi = 1,00$ dar - weshalb sich die Qualität des errrechneten N(t)-Verlaufs lediglich durch einen konstanten Faktor unterscheidet.

Abb. 28 und vornehmlich Abb. 28(e) stellen die Reproduktion des seitlichen Ausweichens (Abb. 28(b)) direkt nach der sehr kurzen Engstelle dar. Die Agenten können direkt nach dem Passieren der Engstelle in die Ausgleichsbewegung gehen, während dies bei den Längen l = 2,00 m und l = 4,00 m nicht möglich ist. Insbesondere die Softwarelösung PedGo zeigt in Abb. 28(e) ein Auffächern des Personenstroms in der Breite. Für Viswalk ist eine graphische Auswertung aufgrund der geringen Länge des Bottlenecks und der maßstäblichen Darstellung nicht möglich.

(a) Experiment bei $t = 30 \, \text{s}$ mit $l = 0,06 \, \text{m}$

(c) Aseri bei t = 30 s mit l = 0,06 m

(e) PedGo bei t = 30 s mit l = 0,06 m

(g) Viswalk bei $t=30\,{\rm s}$ mit $l=0,06\,{\rm m}$

(b) Experiment bei $t=30\,{\rm s}$ mit $l=4,00\,{\rm m}$

(d) Aseri bei $t=30\,\mathrm{s}$ mit $l=4,00\,\mathrm{m}$

(f) PedGo bei $t=30\,\mathrm{s}$ mit $l=4,00\,\mathrm{m}$

(h) Viswalk bei $t=30\,{\rm s}$ mit $l=4,00\,{\rm m}$

Abbildung 28: Geo $1{\rm b}$ - Screenshots der situativen Darstellungen bei $30\,s$ für die Bottlenecklängen $0,06\,m$ und $4,00\,m$

Für Aseri zeigt sich, dass die Länge des Bottlecks keinen Einfluss auf die Entleerungsgeschwindigkeit nehmen kann, da sich die Agenten hintereinander bewegen und nicht überholen können. Zusammenfassend wird festgestellt, dass die durchgeführten Simulationen in Abhängigkeit der variierten geometrischen Parameter b und l qualitativ korrespondierende Verlaufswerte ermittlen. Für die Geometrie 1a/b beträgt die Abweichung der rechnerisch bestimmten Entleerungszeiten untereinander $\leq 20\%$.

Die von den Simulationsprogrammen ermittelten N(t)-Kurven zeigen Besonderheiten in ihrem Erscheinungsbild. Während der N(t)-Verlauf von Aseri und PedGo eine lineare Charakteristik aufweist, besitzt das Ergebnis von Viswalk ähnlich der Empirie eine konkave Form mit einem sehr steilen Anstieg zum Simulationsbeginn.

Neben der manuellen Auswertung wurden die Abweichungen der Berechnungen in eine mathematisch beschreibbare qualitative und quantitative Form transferiert und verglichen. Für die Variation des geometrischen Parameters b konnte ein qualitativ vergleichbares Verhalten der Simulationsergebnisse ($\varphi \geq 0.99$) sowie eine geringe quantitative Distanz zu den empirischen Werten festgestellt werden.

Über alle drei Anordnungen gemittelt, beträgt die euklidische Distanz für Aseri 0,07, PedGo 0,26 und Viswalk 0,10. Die Anzahl der sich parallel nebeneinander bewegenden Agenten wird durch PedGo und Viswalk realitätsnah reproduziert. Aufgrund des für die Simulation mit Aseri genutzten Bewegungsmodus, konnte erst ab einem Querschnitt von b = 1,20 m die Ausbildung von Spuren beobachtet werden.

Auch für die Längenvariation des Bottlenecks verhalten sich die rechnerischen Ergebnisse in einem sehr guten qualitativen wie quantitativen Bereich ($\varphi \ge 1,00$). Die euklidischen Distanzen für Aseri (0,08), PedGo (0,11) und Viswalk (0,10) geben die Experimentalergebnisse mit hoher Genauigkeit wieder.

Der Fluss ist eine vorrangig querschnittsabhängige Größe. Dieser in der Empirie beobachtete Zusammenhang konnte in den Simulationen nachgebildet werden. Auch der empirisch beobachtete erhöhte Fluss durch einen sehr kurzen Engpass konnte zumindest qualitativ abgebildet werden. Des Weiteren sind die Rechenmodelle in ihrer Tendenz auf konservative Flusswerte kalibriert, da die ermittelten Flüsse am unteren Ende der experimentell ermittelten Größen liegen.

6.2 Geo 2 - T-Kreuzung

Für die Bewertung der Geo 2 mit der Variation der Zustrombreite b in einer T-Situation stand kein einheitliches empirisches Datenmaterial zur Verfügung. Die Messungen endeten bei unterschiedlichen Personenzahlen. Während bei der Zustrombreite b = 0,80 m 218 P die Zähllinie passierten, waren es bei b = 1,20 m 305 P und bei b = 2,40 P 303 P (vergl. Abb. 30(a)). Um für die Rechenmodelle und für alle Variationen gleiche Startbedingungen herzustellen, wurde die Geometrie mit 350 P berechnet (Abb. 30(b) - Abb. 30(d)). Die Auswertungsystematik bezieht sich auf den Zeitpunkt, an welchem 100 % der Probanden der Versuchsanordnung die Zähllinie überschritten haben (218 P, 305 P und 303 P). Die gemittelte euklidische Distanz ϵ und das innere euklidische Produkt φ beziehen sich ebenfalls auf diesen Referenzpunkt.

Wie in den vorangegangen Variationen der geometrischen Parameter l und b der Engstelle zeigen auch die rechnerisch ermittelten N(t)-Verläufe für die T-Situation ein vergleichbares Verhalten. Die Ergebnisse korrespondieren mit den Erwartungen aus den empirischen Messungen (Abb. 29).

Abbildung 29: Geo 2 - Einfluss der Breite des Zustroms

Es fällt auf, dass die Absolutwerte der Programme PedGo und Viswalk bei b = 0,80 m geringfügig günstiger als die des Predtetschenski-Milinski-Areals ausfallen, wohingegen das Ergebnis von Aseri inmitten der PMA liegt (Abb. 29(a)). Mit der Erhöhung des Querschnitts verschieben sich die obere und untere Grenze der PMA zu kürzeren Zeiten, während die Veränderungen bei den Ergebnissen der Simulationsprogramme deutlich geringer ausfallen (durchschnittlich -12s bei 2,40 m gegenüber 0,80 m). Es fällt weiterhin auf, dass für diese Anordnung in Aseri sehr konservative Evakuierungszeiten ermittelt werden. Sie sind $\approx 30\%$ langsamer als die Empirie. Einzig in der Zustrombreite b = 2,40 m ist eine signifikante Annäherung an die PMA sowie an die Empirie zu beobachten (Abweichung von 4,5%). Diese Annäherung ist mit einem sehr steilen Anstieg der N(t)-Kurve aus dem Experiment zu erklären, welche den Verlauf von Aseri bei t = 75 s schneidet. Die größte Abweichung zwischen empirischem und rechnerisch ermitteltem Wert tritt mit Aseri bei einer Zustrombreite b = 0,80 m auf (Abb. 29(a)).

Der Entleerungsverlauf, wie er mit Viswalk berechnet wird, ist für die Eingangsbreiten b = 0,80 m und 1,20 m sehr nah am Experiment. Dies ist sowohl optisch als auch über eine gemittelte euklidische Distanz von $\epsilon = 0,98$ sehr gut erkennbar.

Abbildung 30: Geo 2 - Einfluss der Breite des Zustroms

Der Fluss bleibt im Experiment über die Zustrombreite nahezu konstant (lediglich bei b = 2,40 m steigt der Fluss geringfügig von 1,36 P/(ms) auf 1,49 P/(ms)). Bei der Betrachtung der Flüsse verhält sich lediglich Viswalk analog zu den empirischen Werten. Für PedGo ergibt sich bei b = 2,40 m eine leichte Absenkung des Flusses gegenüber den geringeren Zustrombreiten. Im Vergleich zur Empirie beträgt die Abweichung $\approx 14\%$.

Das Simulationsprogramm Aseri ermittelt über die Erhöhung der Breite einen Anstieg des Flusses, dieser fällt jedoch im Vergleich zum Referenzexperiment deutlich niedriger aus.

Weiterhin zeigt sich, dass alle Rechenmodelle die größte Entleerungszeit für die Breite b = 0,80 m berechnen. Die Verläufe für die Breiten 1,20 m und 2,40 m liefern in PedGo und in Viswalk nahezu identische Verläufe. Es liegt nahe, dass dies in der limitierenden Funktion der Abstrombreite zu begründen ist. Bereits bei einer Breite von 1,20 m kommt es zu einer hohen

Verdichtung im Bereich der Stromvereinigung. Die Breite 2,40 m auf beiden Seiten des Zustroms bewirkt eine Reduzierung des Abstromquerschnitts auf 50 % des Zustromquerschnitts, der Fluss über die Zeit bleibt jedoch konstant, da die Abstrombreite konstant geblieben ist. Daher ähneln sich die Entleerungszeiten. Die Abb. 31 zeigt einen Dichteplot²⁷ des Simulationsprogramms PedGo. Es ist ein direkt proportionaler Anstieg der Zeiten mit sehr hohen Dichten (rot) mit zunehmender Zuflussbreite zu erkennen.

Abbildung 31: Geo 2 - Dichteplot für die Variation der Zustrombreite b (PedGo)

In Tab. 15 sind abschließend alle Ergebnisse der Geo 2 zusammengefasst. Die euklidischen Distanzen liegen teilweise deutlich vom idealen Wert $\epsilon = 0$ entfernt - die variable Ergebnislage der manuellen Auswertung bestätigt sich in der Tendenz mit der gewählten mathematischen Vergleichsmethode (vergl. Kap. 3.4). Die inneren euklidischen Produkte ergeben hingegen eine sehr große Nähe zum Idealwert. Aufgrund der ermittelten hohen Ähnlichkeit und des abweichenden optischen Eindrucks der N(t)-Verläufe, wird hier eine detaillierte Betrachtung durchgeführt.

Bemaßung	Software	$t_{100\%}^{28}$	ε	φ
0,80 m	Aseri	107	0,27	0,99
	PedGo	91	0,23	0,99
	Viswalk	82	0,05	1,00
1,20 m	Aseri	129	0,32	1,00
	PedGo	108	0,22	0,99
	Viswalk	94	0,07	1,00
2,40 m	Aseri	116	0,23	1,00
	PedGo	110	0,22	1,00
	Viswalk	91	0,04	1,00

Tabelle 15: Vergleich der berechneten und der empirischen N(t)-Verläufe für Geo 2

Die tatsächliche Ähnlichkeit zwischen empirischen und rechnerischen Verlauf wird durch die Mittelung dieser Methode über den gesamten zeitlichen Verlauf überdeckt. Folglich wurde der zeitliche Verlauf zusätzlich in vier Betrachtungsbereiche (Tab. 16) unterteilt, welche ergänzend manuell und mit Hilfe der beschriebenen mathematischen Methode untersucht wurden. Die Auswahl der Intervalle orientiert sich an charakteristischen Änderungen des Kurvenverlaufs. Eine ausführliche Beschreibung der begrenzenden Merkmale sowie eine graphische Darstellung ist in Appendix F.2 dargestellt.

²⁷ Die Dichte wird in PedGo nach jedem Zeitschritt für den ausgewählten Bereich gespeichert und sein Wert um d+1 erhöht, wenn die Personendichte ≥ 4,0 Person/m² beträgt (signifikanter Stau nach RiMEA [14, S. 9]). Am Ende der Simulation kann somit dargestellt werden, wie häufig dieser Schwellenwert überschritten wurde (Einstellungen hier: 10%).

²⁸ Der Wert $t_{100\%}$ bezieht sich auf den Zeitpunkt, an dem die vollständige Anzahl der am Experiment teilnehmenden Probanden die Zähllinie überschritten hat.

	Tabelle 16: Det	ailbereiche der Geo	o 2 -2,40 m	
Zeitraum	$\leq 25 \mathrm{s}$	$>\!25s<\!60s$	>60 s < 80 s	>80 s
Bereich	А	В	С	D

Für alle Simulationsmodelle ist die euklidische Distanz ϵ im Bereich A sehr hoch, die inneren euklidischen Produkte sind ebenfalls auf einem sehr hohem Niveau (≥ 0.99). Die Modelle beschreiben folglich den Beginn der Entleerung in seinem prinzipiellen Verlauf zutreffend (qualitativ), die Abweichung in Form konkreter Werte ist jedoch erkennbar hoch (quantitativ). Im Bereich bis ca. 25 s sind die Simulationen, wie bereits in der manuellen Auswertung festgestellt wurde, sehr ungenau.

In den Untersuchungsabschnitten B und C ergeben sich zwar räumliche Distanzen zwischen Empirie und Modell, alle drei Simulationsprogramme rechnen hier auf einem konstanten, vergleichbarem Level. Sowohl Charakteristik als auch Distanz sind beinahe identisch.

Im letzten Abschnitt der Detailanalyse (D) treten wie im Abschnitt A erneut große Unterschiede in qualitativer wie quantitativer Hinsicht auf. Nach dieser Methode entstehen folglich die Differenzen zwischen den Rechenmodellen an den zeitlichen Rändern der Simulationen.

Im Ergebnis konnte die bei Geo 1a und 1b entstandene Tendenz, dass Simulationsmodelle ein qualitativ vergleichbares Ergebnis zu empirischen Beobachtungen berechnen, durch die Auswertung der T-Situation fortgesetzt werden. Allerdings treten mit zunehmender Komplexität auch höhere Abweichungen (bis zu 30%) auf. Global betrachtet sinkt die Entleerungszeit zunächst mit steigendem Zustromquerschnitt, bevor sie auf einem nahezu konstantem Niveau verbleibt. Insbesondere für die Variation der Zustrombreite von 1,20 m wich die von Aseri ermittelte Entleerungszeit erheblich von den beiden anderen Simulationsprogrammen und dem empirischen Ergebnis ab.

Die euklidische Distanz beträgt über die Variationen gemittelt für Aseri (0,27), PedGo (0,22) und Viswal (0,07).

Mit Hilfe eines Dichteplots (Abb. 31) sowie einer Gegenüberstellung von Screenshots (Abb. D.50) konnte die Vermutung bekräftigt werden, dass bei einer Zustrombreite b = 0,80 m dieser geometrische Parameter das limitierende Element ist, wohingegen ab einem Querschnitt von b = 1,20 m die Breite des Abstroms maßgeblich ist. Es kommt zu Stauungen im Bereich der Vereinigung der beiden Personenströme, was zu einer Verzögerung der Gehgeschwindigkeit und damit der Entleerungszeit führt.

Mit Hilfe der Geo 2 konnte ebenso die Notwendigkeit einer detaillierten Betrachtung der Auswertungsmethodik untermauert werden. Die für diese Arbeit verwendete mathematische Parametrisierung ermittelt die Ähnlichkeit zweier Graphen über den vollständigen Untersuchungszeitraum. Wird der Evakuierungsvorgang in charakteristische Zeitintervalle unterteilt und separat untersucht, so ergeben sich Bereiche mit unterschiedlich hoher Qualität. Insbesondere an den zeitlichen Rändern der Simulation, wichen die Rechenmodelle stark von der Empirie ab.

6.3 Geo 3 - Y-Vereinigung

Zur Bewertung der Simulationsergebnisse für die Geo 3 standen keine empirischen Daten zur Verfügung. Die Begutachtung beschränkt sich daher auf eine manuelle Auswertung. Die ermittelten Entleerungszeiten sind in Tab. 17 dargestellt.

Tabelle 17: Vergleich der Ergebnisse für Geo 3				
Software	$t_{100\%}/s$	$J_s / P/(ms)$		
Aseri	111	0,73		
PedGo	140	0,60		
Viswalk	95	0,80		

Die Kurvencharakteristik für den N(t)-Verlauf bleibt auch bei einer weiteren Steigerung der Komplexität im geometrischen Aufbau ähnlich der vorherigen Geometrien. Während die von Viswalk errechnete Kurve eine konkave Ausprägung mit zunächst steilem Anstieg besitzt, stellt sich sowohl bei mit Aseri als auch mit PedGo vorgenommenen Berechnungen ein linearer N(t)-Verlauf ein. Wie sowohl bei der Untersuchung der Engstelle als auch bei der T-Kreuzung aufgefallen war, unterliegen die Agenten bei der Berechnung mit PedGo einer markant hohen Reaktionszeit bis zu ersten Passage (18s). Sowohl bei Aseri (10s) als auch bei Viswalk (7s) passieren die ersten Agenten die Zähllinie deutlich früher. Auch in diesem Szenarium wurde der empfohlene signifikante Seed²⁹ ausgewertet, wohingegen bei den Berechnungen der anderen beiden Simulationsprogramme der Mittelwert aus zehn Simulationsläufen genutzt wurde.

Abbildung 32: Geo 3 - Y-Vereinigung

Als Erklärung für die ermittelte, sehr konservative Entleerungszeit mit PedGo kommen zwei Faktoren in Betracht. Zum einen musste in der Modellierung aufgrund der geometrischen Bemaßung und des einzuhaltenden räumlichen Diskretisierungsrasters von der Achsensymmetrie

²⁹ Der signifikante Seed ist derjenige Rechenlauf, bei welchem 95% der Berechnungen aus einer Normalverteilung günstiger verlaufen (vergl. Kap. 3.2.2).

abgewichen werden (vergl. Abb. 33). Die Verschiebung der Symmetrieachse beträgt 0,4 m, unter der konservativen Annahme einer durchschnittlichen Gehgeschwindigkeit von 0,8 m/s ergibt sich ein zusätzlicher Zeitbedarf von 0,5 s. Dieser Effekt erklärt die lange Entleerungszeit folglich nicht.

(a) Geo 3 mit Symmetrieachse

Abbildung 33: Geo 3 - Symmetriebruch und Konsequenzen (PedGo)

Zum anderen ergibt sich ein reduzierender Einflussfaktor der Entleerungsgeschwindigkeit aus der notwendigen Diskretisierung des Raumes.

Die Diskretisierung erfolgt in quadratischer Form, deren innenliegende Winkel entsprechend 90° betragen. Zur exakten Darstellung der diagonalen Wandführung wäre jedoch eine Dreiecksform oder aber eine Drehung um den Mittelpunkt der Gitterzellen notwendig. Folglich entsteht eine stufenartige Wandfläche, an der sich die Agenten nach den modellierten Updateregeln entlang bewegen, wodurch ein geringerer Querschnitt zur Verfügung steht. In der Folge stehen pro Aktualisierungsschritt weniger freie Zellen zur Verfügung, wodurch sich die Dichte erhöht und infolge dessen die Gehgeschwindigkeit sinkt (Abb. 33(b)).

Weiterhin ist anzumerken, dass bei der Diskretisierung im Modell ein Fehler durch den Verfasser dieser Arbeit verursacht wurde, welcher trotz sorgfältiger Arbeit und die Kontrolle durch einen unabhängigen Beobachter erst in der detaillierten Auswertung bemerkt wurde. Der Querschnitt der Abströmfläche beträgt im ausgewerteten PedGo-Szenario anstelle von 4,80 m lediglich 4,40 m. Der Querschnitt nach der Zusammenführung der Personenströme ist folglich 8,3% geringer. Eine Reduzierung der verfügbaren Fläche in dieser Größenordnung hat einen Effekt auf die Evakuierungzeit, der an dieser Stelle jedoch nicht quantifiziert werden kann.

Des Weiteren ist die Aussagekraft der PMA in dieser Anordnung reduziert, da zur Berechnung der Zusammenstrom zweier Personenflüsse in einem Winkel von 180° herangezogen wurde. Die dargestellte Fläche ist dient daher lediglich als Näherung.

Ein Vergleich der Anordnung mit einem Zusammenstrom in T-Form verdeutlicht die durch die Diskretisierung erzeugten Ungenauigkeiten. Sowohl in Aseri als auch in Viswalk reduziert sich die Entleerungszeit der Geometrie mit dem Wechsel von einem T- auf einen Y-Zusammenfluss. Diese Entwicklung resultiert aus der verringerten Anzahl an Kollisionen und damit einhergehenden Ausweich- und Ausgleichsbewegungen. Mit PedGo konnte dieser Effekt aufgrund der oben beschriebenen Begründungen nicht reproduziert werden, die Entleerung der Y-Geometrie nahm deutlich mehr Zeit in Anspruch (vergl. Abb. 34).

Auffällig ist die hohe zeitliche Verzögerung der N(t)-Kurve von PedGo. Die Zusammenführung zweier Personenströme in Y-Form bewirkt im Vergleich zur T-Form eine deutliche Reduzierung des Personenflusses über der Zeit (Tab. 32). War bei einer Vereinigung im Winkel von 90° ein

Abbildung 34: Geo 2 / 3 - Vergleich der T- und Y-Kreuzung

Strom von $\geq 1,00 \text{ P/(ms)}$ zu beobachten, so ist in der modellierten Y-Vereinigung lediglich ein Strom von $\approx 0,70 \text{ P/(ms)}$ möglich.

(a) Geo 2 nach 20 s (um 90° gedreht)

(b) Geo 3 nach 20s

Abbildung 35: Geo 2 / 3 - Vergleich der Trajektorien für Geo 2 und Geo 3 (Aseri)

Der Vergleich der Trajektorien über den Evakuierungsverlauf zeigt eine erheblich höhere Ausnutzung der zur Verfügung stehenden Abstromfläche (Abb. 35). Bereits im Bereich des Aufeinandertreffens der beiden Personenströme kommt es in der Y-Anordnung zu einer starken Interaktion der Agenten und zu einer signifikanten Durchmischung. In der t-förmigen Anordnung bilden sich hingegen zwei homogene Spuren aus.

	e	arphi
Aseri vs. PedGo	0,29	0,98
Aseri vs. Viswalk	0,17	0,99
PedGo vs. Viswalk	0,37	0,96

Tabelle 18: Mathematische Ähnlichkeit der N(t)-Kurven für Geo 3

Die Tab. 18 verdeutlicht anhand der mathematischen Parameter ϵ und φ die große räumliche Distanz der berechneten Verläufe. Während die qualitative Aussage für alle Simulationsprogramme mit einem Ergebnis von $\varphi \ge 0.96$ sehr nah am Idealwert ist, sind die quantitativen Distanzen der errechneten N(t)-Kurven untereinander wie in der manuellen Auswertung herausgearbeitet wurde mit einem $\epsilon \ge 0.17$ deutlich vom Bestwert entfernt.

Bei der Analyse der Geometrie, die einen Zusammenfluss zweier Personenströme in gleicher Bewegungsrichtung in Form eines Y-Aufbaus darstellt, wurde eine große Streuung der errechneten N(t)-Verläufe festgestellt. Die erwartete Verkürzung der Entleerungszeit durch eine Zusammenführung der Personenströme in Bewegungsrichtung konnte nicht in allen Simulationsmodellen abgebildet werden. In der detaillierten Szenarioanalyse konnte bei der Reproduktion der Ergebnisabweichungen eine Diskrepanz in der Diskretisierung der PedGo-Berechnung identifiziert werden. Es wurde deutlich, dass bei der Nutzung von Simulationsmodellen trotz sorgfältiger und gewissenhafter Handhabungen Eingabefehler nicht ausgeschlossen werden können. Es obliegt dem Gutachter die Plausibilität der Ergebnisse und den Grad der Verwendbarkeit festzustellen.

Es konnte weiterhin verdeutlicht werden, dass eine Übertragung von Beobachtungs- oder Rechenergebnissen einer ähnlichen geometrischen Anordnung nicht ohne Weiteres möglich ist. So sieht das Modell von Predtetschenski und Milinski beispielsweise eine Zusammenführung der Personenströme in Form eines Y-Aufbaus nicht vor. In der Folge wurde zum Vergleich ein Predtetschenski-Milinski-Areal mit Hilfe der T-Anordnung ermittelt und als Näherung zum Vergleich herangezogen. Wie sich zeigte weichen die simulierten Ergebnisse erheblich davon ab. Eine Übertragung bekannter, ähnlicher Szenarien führt mitunter zu unerwarteten Ergebnissen, deren Vergleichbarkeit nicht mehr gegeben ist. Es wird vielmehr die Notwendigkeit deutlich, bei der Einführung kreativer Designlösungen im Bereich von Fluchtwegen die Anwendbarkeit bestehender Simulationsmodelle zu überprüfen und die Bewertung ggf. durch das Instrument experimenteller Beobachtungen zu erweitern.
6.4 Geo 4 - Vereinigung nach einer Treppe

Auch zur Bewertung der Simulationsergebnisse für die Geo 4 standen keine empirischen Daten zur Verfügung. Die Begutachtung beschränkt sich daher auf eine manuelle Auswertung, deren ermittelten Entleerungszeiten in Tab. 19 dargestellt sind. Der Grad an Komplexität der Untersuchungsgeometrie wurde mit dieser geometrischen Anordnung durch die Vereinigung von zwei Personenströmen mit einer zusätzlichen vertikalen Bewegungskomponente erhöht.

Tabelle 19: Vergleich der Ergebnisse für Geo 4									
Software	$t_{100\%}/s$	$J_s / P/(ms)$							
Aseri	152	1,06							
PedGo	140	1,21							
Viswalk	137	1,12							

Zum Simulationsbeginn zeigen die Ergebnisse aller Anwendungen eine auffällige Ähnlichkeit in ihrem Verlauf, bevor sich ab 35 s erkennbare Unterschiede ausbilden, die mit der Abbildung der Zusammenführung beider Personenströme entstehen. Während die für Viswalk bereits beobachtete konkave Form erkennbar ist, zeigt sich bei Aseri die ebenfalls bekannte konsequente Linearität. Wie bei der T- oder Y-Vereinigung bereits beobachtet, bildet sich als Ergebnis der Anwendung der Simulationssoftware PedGo ein leicht konvexer N(t)-Verlauf aus (Abb. 37). Dies liegt im starken Einfluss des Treppenabschnitts und der verhältnismäßig hohen Reduktion der Gehgeschwindigkeit in diesem Bereich begründet (vergl. 3.2.2). In diesem Abschnitt können sich die Agenten lediglich mit der halben Wunschgeschwindigkeit in Zielrichtung bewegen, so dass die Passage deutlich länger dauert. Es ist erkennbar, dass kein starker Abfall der Steigung ausgebildet wird, nachdem der "schnellere" Bereich der Geometrie entleert sein müsste. Eine solche Situation tritt nicht ein, da nicht die Wunschgeschwindigkeit im Bereich vor dem Zusammenstrom der limitierende Faktor ist, sondern die Kapazität im Bereich des vereinigten Flusses.

(a) Geo 4 - Trajektorien nach 60s

(b) Geo 4 - Gehgeschwindigkeiten nach 60s

Abbildung 36: Geo 4 - Vergleich der Trajektorien und Gehgeschwindigkeiten (Aseri)

In der Abb. 36(b) ist die Beeinträchtigung der Gehgeschwindigkeit dargestellt. Die grüne Farbe bedeutet die maximal mögliche Gehgeschwindigkeit, orange eine Reduzierung und rot völliger Stillstand für ≥ 10 s. Sowohl im Bereich der modellierten Treppe, als auch im unteren Zulaufarm kommt es zu starken Einschränkungen der möglichen Gehgeschwindigkeit. Ein Unterschied ist nicht erkennbar. Nach dem Zusammenstrom hingegen erhöht sich die Anzahl der grünen Felder, auf denen die maximale Gehgeschwindigkeit möglich wird. Die Ausbildung der interaktionreduzierenden Spuren ist anschaulich in Abb. 36(a) visualisiert. Diese Form der Darstellung bekräftigt die Interpretation, dass nicht die Treppe sondern die Kapazität der Abstromfläche limitierend wirkt.

Der mit Aseri berechnete lineare Entleerungsverlauf resultiert ferner aus der Kombination der Einflüsse der Treppengeschwindigkeit und der begrenzenden Funktion der Kapazität des Zusammenflusses. Die Komponenten, welche die Gehgeschwindigkeit auf Treppen beeinflussen, werden in einem Faktor zusammengeführt, dessen Einfluss konstant ist (vergl. Gl. 3.10). Folglich ist bei der Implementierung von Treppen keine andere Kurvencharakteristik zu erwarten, als bei ebenerdigen Geometrien.

Abbildung 37: Geo 4 - Vereinigung nach einer Treppe

Im von Viswalk genutzten Social-Force-Model wird die Geschwindigkeitsreduzierung einer kombinierten Bewegung in horizontale und vertikal Richtung ebenfalls durch einen reduzierenden Faktor realisiert. Der Einfluss der Treppe auf die Gesamtentleerungszeit ist ohne die zusätzliche Definition einer flächenspezifischen Geschwindigkeitsverteilung folglich nicht sehr hoch.

Insbesondere in den ersten 50 s zeigt die von Viswalk errechnete Kurve eine sehr gute Übereinstimmung mit dem dynamischen Strömungsmodell von Predetschenski und Milinski, während die mit Aseri und PedGo ermittelten Werte erst nach circa einem Drittel der Beobachtungszeit in der PMA liegen.

Durch die geringen Abweichungen in den absoluten Entleerungszeiten stellen sich niedrigere, aber in der Größenordnung vergleichbare Flüsse ein ($\approx 1,15 \text{ P/(ms)}$) (Tab. 19 und für Geo 2 -2,40 m Abb. 29(d)). Dies unterstützt die Vermutung, dass nicht die Geschwindigkeit im Bereich vor dem Zusammenfluss, sondern die Kapazität der Abströmfläche für die Evakuierungszeit maßgeblich ist. Die mathematische Ähnlichkeit im arithmetischen Mittel über den gesamten Wertebereich der einzelnen Funktionen sind in Tab. 20 aufgeführt. Durch die geringe euklidische Distanz ϵ zwischen PedGo und Aseri wird der optische Eindruck der Ähnlichkeit bestätigt. Dies wird durch ein inneres Produkt in Form des Idealwertes von $\varphi = 1,00$ bestätigt. Die gute Übereinstimmung liegt in dem starken Über- und Unterschätzen an den zeitlichen Rändern der Simulation begründet, die in der Gesamtbetrachtung einen ausgleichenden Effekt erzielen.

Die quantitativen Differenzen zwischen Aseri und Viswalk bzw. PedGo und Viswalk sind hingegen deutlich größer, wobei die qualitative Ähnlichkeit weiterhin gegeben bleibt ($\varphi \ge 0.99$).

	(,
	ϵ	arphi
Aseri vs. PedGo	0,06	1,00
Aseri vs. Viswalk	0,18	0,99
PedGo vs. Viswalk	0,23	0,99

Tabelle 20: Mathematische Ähnlichkeit der N(t)-Kurven für Geo 4

In der Analyse einer Geometrie, die einen Zusammenfluss zweier Personenströme in einem Treppenhaus repräsentiert, konnte eine hohe mathematische Ähnlichkeit in den Ergebnissen festgestellt werden. Diese Ähnlichkeit besitzt lediglich in der Mittelung über den gesamten Simulationsverlauf Gültigkeit. Gerade an den zeitlichen Rändern der Simulation ergaben sich ausgeprägte Differenzen in den Kurvencharakteristiken. Dennoch konnte eine sehr geringe Streuung der absoluten Entleerungszeiten festgestellt werden ($\overline{t} = 143 s$). Dieses Ergebnis ist vor dem Hintergrund bemerkenswert, dass jedes der drei genutzten Modelle die Geschwindigkeitsreduktion auf Treppen in einer anderen Form implementiert.

Die konsvervativen Flussergebnisse unterstützen die Vermutung, das der Querschnitt des vereinigten Flusses einen größeren Einfluss auf die Entleerungszeit hat, als die Geschwindigkeit der einzelnen Ströme. Anhand aussagekräftiger Visualisierungen in Form von Trajektorien und der farbkodierten Abbildung von Gehgeschwindigkeiten wurde diese These bekräftigt.

7 Schlussfolgerungen

In der vorliegenden Untersuchung wurden vier charakteristische Gebäudegeometrien zur detaillierten Analyse ihres Entleerungsverlaufs untersucht. Hierbei handelt es sich um eine Engstelle, eine Zusammenführung zweier Personenströme in T- und Y-Form sowie ein Zusammenstrom in einem Treppenhaus. Für die Anordnungen der Engstelle und der T-Situation wurden zusätzlich Szenarien mit einer Variation der geometrischen Parameter Breite b und Länge l der Engstelle sowie der Zustrombreite b für die T-Kreuzung durchgeführt.

Zur Berechnung der Evakuierungsverläufe kamen die mikroskopischen Computersimulationsmodelle Aseri, PedGo und Viswalk zum Einsatz. Zu jeder Anordnung wurde ein Predetschenski-Milinski-Areal bestimmt und mittels Vektoroperation die euklidische Distanz sowie das innere euklidische Produkt ermittelt, um den Entleerungsverlauf über der Zeit mathematisch vergleichbar zu machen. Ergänzend wurden zwei Geometrien mit Ergebnissen aus Realexperimenten verglichen (Geo 1 und Geo 2).

Die Eingabegrößen der Rechenmodelle, wie beispielsweise die Verteilung der Reaktionszeit und der Gehgeschwindigkeit, wurden an geeigneten Stellen harmonisiert und an den gegenwärtigen Wissensstand der Fachliteratur angeglichen.

Es zeigte sich, dass die Resultate der ausgewählten Simulationsmodelle für das Szenario einer Engstelle vergleichbare Verlaufszeiten wie empirisch erwartet erzielten. Sowohl in der Längenals auch in der Breitenvariation wurde eine hohe qualitative Übereinstimmung mit der mathematischen Parametrisierung nachgewiesen. In der detaillierten Analyse konnten Unterschiede in der Kurvencharakteristik ausgearbeitet werden. Während Aseri und PedGo einen nahezu linearen Anstieg der N(t)-Kurven errechneten, ergab sich in der Auswertung der experimentellen Datenlage eine konkave Verlaufsform, welche durch Viswalk qualitativ nachgebildet werden konnte.

In den Referenzexperimenten kristallisierten sich zwei wesentliche Beobachtungen heraus. Zum einen ist der spezifische Fluss durch eine sehr kurze Engstelle signifikant erhöht und zum anderen hat die Länge des Bottlenecks ab einer bestimmten Größe keinen Einfluss mehr auf die Evakuierungszeit. Die Rechenmodelle PedGo und Viswalk konnten diese Wirkung nachbilden. Das Simulationsmodell Aseri stellte weder den Einfluss der Breite noch den erhöhten Fluss des sehr kurzen Bottlenecks dar.

Des Weiteren zeigten sich große Unterschiede in der Ausnutzung der zur Verfügung stehenden Gangbreite durch die simulierten Fußgänger. Während sowohl im Experiment als auch in Ped-Go bei einer Gangbreite von 1,20 m bis zu drei Individuen nebeneinander beobachtet werden konnten, wurden bei Viswalk zwei und bei Aseri lediglich eine Spur ausgebildet.

Mittels einer Detailuntersuchung unter Einsatz des inneren euklidischen Produktes und der euklidischen Distanz konnte gezeigt werden, dass die mathematische Ungenauigkeit der rechnerisch ermittelten Entleerungsverläufe insbesondere an den zeitlichen Rändern des Simulationsgebietes großen Schwankungen unterliegen. Die Aussagekraft eines verwendeten Modells sollte im Falle einer gutachterlichen Verwendung stets sorgfältig untersucht werden.

Die Veränderung der geometrischen Anordnung bei der Vereinigung von Personenströmen von einer T- in eine Y-Situation, brachte eine erhebliche Schwankung der erzielten Simulationszeiten. Auch für die Handrechenmethode nach Predetschenski und Milinski konnte lediglich von einer angenommenen Übertragung der Verhältnisse ausgegangen werden, da für eine solche Zusammensetzung keine Grundgeometrien gegeben sind. Die erwartete Verkürzung der Entleerungszeit aufgrund geringerer Interaktionen der Agenten untereinander und des weniger abrupten Richtungswechsel konnte nicht realisiert werden. Hierbei wird deutlich, dass geringfügige Änderungen in der geometrischen Konfiguration nicht zwangsläufig zu den erwarteten Ergebnissen führen müssen. Ein Analogieschluß aufgrund geometrischer Ähnlichkeiten kann zu gravierenden Fehleinschätzungen führen.

In der vierten untersuchten Geometrie wurde der Einfluss der reduzierten Gehgeschwindidgkeit auf Treppen untersucht. Die Implementierung der geminderten Geschwindigkeit im Bereich der Treppe wird in den verwendeten Modellen durch unterschiedliche Ansätze realisiert. Dennoch führen die Rechnungen zu vergleichbaren Evakuierungszeiten. Diese Beobachtung konnte durch Ergebnisse der mathematischen Vergleichsmethode gefestigt werden.

Für jede untersuchte Anordnung wurde global der spezifische Personenfluss ermittelt. Es konnte festgestellt werden, dass die Simulationsprogramme in ihrer Tendenz geringere Flüsse ermitteln, als in den Referenzexperimenten und in der Fachliteratur veröffentlicht sind. Ob die konservativen Flussannahmen geeignet sind, die gewünschte Sicherheit auf der Ergebnisseite zu erzeugen, hängt sowohl von der Einsatzart als auch vom konkreten Einzelfall ab. Die Annahme konservativer Eingangsgrößen muss in einem komplexen System nicht zwangsläufig zu konservativen Ergebnisgrößen führen. Werden beispielsweise Computerberechnungen eingesetzt, um Zustromzahlen zu einem bestimmten Gebäude oder Gelände zu ermitteln, so kann die Annahme zu geringer Personenflusszahlen dazu führen, dass Zu- und Abwegungen zu gering dimensioniert sind. Für den konkreten Einsatzzweck ist daher zu prüfen, ob die eingesetzte Rechenmethode die erwarteten Anforderungen erfüllen kann.

Nicht jedes Modell ist für jeden Anwendungszweck geeignet. Die Stärken und Schwächen der Methodik liegen in der detaillierten Sachkenntnis des Nutzers. Die Expertise der Modellgrenzen, die sorgfältige Auswahl der Eingabeparamter sowie eine schutzzielorientierte Interpretation der Ergebnisse sind die Voraussetzung einer sinnhaften Anwendung von Simulationsmethoden in der Ingenieurwissenschaft. Unter diesen Voraussetzungen kann der Einsatz von Simulationsmodellen als planerisches Werkzeug ein geeignetes Mittel sein, mit dessen Hilfe problematische Situationen in komplexen Geometrien identifiziert und analysiert werden können. Sie können Hinweise liefern und einem gut ausgebildeten Anwender helfen, seine Erfahrung in Form nachvollziehbarer Ergebnisse besser zum Ausdruck zu bringen. Dabei sind sie in der Lage, beobachtete individuelle und/oder gruppendynamische Phänomene unter Beachtung der jeweiligen modellbedingten Grenzen in unterschiedlicher Detailtiefe und Genauigkeit abzubilden. Sie bleiben gleichwohl ein Hilfsmittel zur Begutachtung und ersetzen weder ein präzise ausgearbeitetes, realistisches und hinreichend flexibles organisatorisches Sicherheitskonzept noch die kritische Interpretation der erzielten Ergebnisse durch einen erfahrenen Gutachter.

Die Abbildung von Fußgängerphänomenen und komplexen Interaktionen in Simulationsmodellen hat in den vergangenen Jahrzehnten einen enormen Entwicklungssprung erfahren. Durch die wachsende Leistungsfähigkeit der zur Verfügung stehenden Hardware konnte sowohl die Komplexität der Modelle als auch die Anzahl an Berechnungen pro Zeit gesteigert werden. Wie in der vorliegenden Arbeit gezeigt werden konnte, bedarf es neben der weiteren Verfeinerung der Modellierungen insbesondere einer Fortentwicklung des Verständnisses grundlegender physikalischer Eigenschaften der Fußgängerphänomene. Hierzu ist eine intensive, unabhängige Grundlagenforschung einschließlich großskaliger Experimente unerlässlich.

Conclusion

This thesis is about the investigation of evacuation procedures simulated for four different building structures including a bottleneck-scenario, a T- and Y shape as well as a scenario in a stairwell. The width and the length of the bottleneck and the T-shape were varied.

Aseri, PedGo and Viswalk are used as microscopic simulation tools. A Predtechenski-Milinski-Area was calculated for every simulation. The Euclidean distance and inner product were used to make the progress of the evacuation comparable over time. In addition the results of two building structures were compared to real life experiments. The input for the calculation models (e.g. the distribution of the reaction time and the walking speed) were harmonised and adjusted to the state of the art mentioned in literature.

The simulation models for the bottleneck-scenario show a good fit of the evacuation times with the empirical results. The fit of the variation of length and width is proofed by a mathematical parameterisation. The detailed analysis shows that there are differences in the curve characteristics. Aseri and PedGo calculate a linear slope of the N(t)-curves, whereas an analysis of the experimental data shows a concave curve which can be visualised by Viswalk.

The second geometry was used to investigate two different flows of persons meeting at a T-junction where two major findings were found. On the one hand it turned out that the specific flow stream is significantly increased when persons meet at a short bottleneck. On the other hand, after a certain value the length of a bottleneck does not have an influence on the evacuation time which is proofed by using the software PedGo and Viswalk. By using Aseri it was not possible to proof these findings.

The investigations showed that there are comparatively big differences in terms of using the whole width of a floor by the pedestrians. Whereas real life experiments and simulations with PedGo showed that a floor with a width of 1,20 m can fit three persons next to each other, Viswalk is able to fit only two persons and Aseri is not capable of simulating more than one line of persons.

The borders of the geometry were analysed in more detail by using the inner Euclidean product and the Euclidean distance. Comparatively big variations of the evacuation process can be found at the boundaries. For consulting services the limits of the simulation software (especially at the boundaries) have to be verified and taken into consideration. By changing the geometric structure from a T- to a Y-junction a big deviation of evacuation times was found. The calculation method after Predetschenski and Milinski is only capable to analyse T-shapes and as a consequence this method could not be used to further investigate this issue further. The expected reduction of the evacuation time due to minimised interactions between persons and minimised changes of directions could not be realised. Consequently small changes in the geometric configuration do not necessarily have to lead to the expected logical results. A conclusion based on geometric similarities can lead to significantly mistakes in the evaluation of evacuation times.

The effect of the reduced walking speed in a stairwell was investigated in the fourth geometry the stairwell-scenario. The investigation of the effect of reduced speed is analysed in different ways. However, the calculations lead to comparable evacuation times which are verified by mathematical methods.

The specific flow of persons were calculated for every geometry. It turns out that the used simulation software calculated slightly smaller flows compared to real life experiments and values found in literature. Generally it is not clear whether these conservative flow values are suitable to evaluate the safety. In addition every geometry has to be analysed in detail. In a complex system conservative input variables do not necessarily lead to conservative results. In case of calculating the flow of persons to a building via software using a too small person flow, the dimensions of entrances and junctions can be chosen too small as well. Again, the calculation method has to be verified for a certain building or geometry. Not every model is suitable for every kind of calculation. The user has to know the strength and the weakness of the software in order to interpret the results in the right way. Being aware of the calculation limits of the software is only one important point to successfully evaluate the safety of a building. Furthermore selecting the right input parameters and interpreting the results in a way that the safety of the persons is the most important protection target instead of looking to costs. Under these circumstances the use of simulation models can be suitable as a planning tool for advanced users to identify and to analyse problems regarding the evacuation of complex buildings. Software makes it possible to get to know more about individual and group dynamic phenomena and to visualise these phenomena in depth always bearing in mind that every model has limits. As a tool software cannot be successfully used without a safety concept and a critical interpretation of surveys of specialised consultants.

In the past centuries the simulation of evacuation processes had an enormous boom. Due to the increasing power of IT hardware it was possible to increase the complexity of models as well as the number of calculations per time unit.

In the end it is clear that next to continuous improvements of simulation models, the basic physical behaviour of pedestrians has to be analysed and understood in more detail and implemented in software. That can only be realised by intensive independent research including real life experiments.

Literatur

- Dirk Helbing, Illés J. Farkas, Péter Molnár und Tamás Vicsek. "Simulation of pedestrian crowds in normal and evacuation situations". In: Pedestrian and evacuation dynamics. Hrsg. von Michael Schreckenberg und Som Deo Sharma. Berlin und New York: Springer, 2002, S. 22–58.
- [2] Burkhard Forell und Dietmar Hosser. "Assessment of Occupant Safety in Places of Assembly". In: 11th International Symposium on Fire Protection (2010).
- [3] Michael Schreckenberg. "Perspektiven der Evakuierungsberechnung". In: Bauphysik-Kalender 2011. Hrsg. von Nabil A. Fouad. Berlin: Wilhelm Ernst & Sohn und Ernst & Sohn, 2011, S. 199-212.
- [4] Dirk Helbing und Patrik Mukerji. "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster". In: EPJ Data Science 7.1 (2012).
- [5] Volker Schneider. "Rechnerische Simulation der Räumungsvorgänge bei grossen Menschenansammlungen". In: Stadionssicherheit und Panik II: Polizeiwissenschaftliche Schriftenreihe. Hrsg. von Clauss-Siegfried Grommek. Rothenburg/OL: Eigenverl. der Hochschule der Sächsischen Polizei (FH), 2009.
- [6] Ulrich Weidmann. Transporttechnik der Fußgänger: Transporttechnische Eigenschaften des Fußgängerverkehrs (Literaturauswertung). Hrsg. von ETH Zürich. Zürich. 1993.
- Serge P. Hoogendoorn und Winnie Daamen. "Pedestrian Behavior at Bottlenecks". In: Transportation Science 39.2 (2005), S. 147–159.
- [8] Armando Bazzani, Bruno Giorgini und Sandro Rambaldi. "Traffic and Crowd Dynamics: The Physics of the City". In: Encyclopedia of Complexity and Systems Science. Hrsg. von Robert A. Meyers. Berlin: Springer New York, 2009, S. 9411–9429.
- [9] Sven Hebben. "Leitfaden für die Erstellung von Evakuierungsgutachten auf der Grundlage von Personenstromsimulationen und deren Bewertung durch die Genehmigungsbehörde". Diplomarbeit. Duisburg-Essen: Universität, 2008.
- [10] Jörg Meister. "Simulation of crowd dynamics with special focus on building evacuations". Masterthesis. Wedel: Fachhochschule, 2007.
- J.P Yuan, Z. Fang, Y.C Wang, S.M Lo und P. Wang. "Integrated network approach of evacuation simulation for large complex buildings". In: Fire Safety Journal 44.2 (2009), S. 266-275.
- [12] Guylène Proulx. "Movement of People: The Evacuation Timing". In: The SFPE Handbook of Fire Protection Engineering. Hrsg. von Philip J. DiNenno. Bethesda und Md: NFPA National Fire Protection Association, 2002, S. 3/342 -3/366.
- [13] Winnie Daamen. "Modelling Passenger Flows in Public Transport Facilities". Dissertation. Delft: University of Technology, 2004.
- [14] RIMEA. Richtlinie für Mikroskopische Entfluchtungsanalysen: Version: 2.2.1. Juni 2009.
- [15] ped net. URL: http://www.ped-net.org (besucht am 2012.07.11).
- [16] Taku Fujiyama und Nick Tyler. "Predicting the walking speed of pedestrians on stairs". In: Transportation Planning and Technology 33.2 (2010), S. 177-202.

- [17] Christoph Kotthaus. "Simulation vs. Realität Anwendbarkeit von Evakuierungssimulationsprogrammen zur Vorhersage von Räumungszeiten für Bürohochhäuser". Diplomarbeit. Wuppertal: Bergische Universität, 2006.
- [18] Sebastian Burghardt. "Analyse und vergleichende Untersuchung zum Fundamentaldiagramm auf Treppen". Masterthesis. Wuppertal: Bergische Universität, 2009.
- [19] Andreas Schadschneider, Wolfram Klingsch, Hubertus Klüpfel, Tobias Kretz, Christian Rogsch und Armin Seyfried. "Evacuation Dynamics: Empirical Results, Modeling and Applications". In: Encyclopedia of Complexity and Systems Science. Hrsg. von Robert A. Meyers. Berlin: Springer New York, 2009, S. 3142–3176.
- [20] Daniel R. Parisi, Marcelo Gilman und Herman Moldovan. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions". In: Physica A: Statistical Mechanics and its Applications 388.17 (2009), S. 3600-3608.
- [21] Wsewolod Michailowitsch Predtetschenski und Anatoli Iwanowitsch Milinski. Personenströme in Gebäuden. Berechnungsmethoden für die Projektierung. Köln: Verlagsgesellschaft Rudolf Müller, 1978.
- [22] ARGEBAU. Musterverordnung über den Bau und Betrieb von Versammlungsstätten -(Muster-Versammlungsstättenverordnung – MVStättV). 2005.
- [23] International Maritime Organization. MSC.1/Circ. 1238. 30. October 2007.
- [24] Harold E. Nelson und Frederick W. Mowrer. "Emergency Movement". In: The SFPE Handbook of Fire Protection Engineering. Hrsg. von Philip J. DiNenno. Bethesda und Md: NFPA National Fire Protection Association, 2002, S. 3/367-3/380.
- [25] Technisch-Wissenschaftlicher Beirat (TWB). Technischer Bericht: Statische und dynamische Personendichten bei Großveranstaltungen. Hrsg. von Dirk Oberhagemann. 2012.
- [26] David Purser und M. Bensilum. "Quantifying of behavior for engineering design standards and escape time calculations". In: Safety Science 38 (2001), S. 157–182.
- [27] David Purser. "Dependence of Modelled Evacuation Times on Key Parameters and Interactions". In: Pedestrian and evacuation dynamics 2008. Hrsg. von Wolfram Klingsch, Christian Rogsch, Andreas Schadschneider und Michael Schreckenberg. Berlin und Heidelberg: Springer, 2010, S. 666-675.
- [28] Dirk Helbing. Verkehrsdynamik: Neue physikalische Modellierungskonzeptek. Berlin: Springer, 1997.
- [29] Wolfgang Bohle, Marco Irzik und Carola Mennicken. "Ablauf und Qualität des Fußgängerverkehrs". In: Straßenverkehrstechnik 48.11 (2004), S. 585–594.
- [30] J. Zhang, W. Klingsch, A. Schadschneider und A. Seyfried. "Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions". In: Journal of Statistical Mechanics: Theory and Experiment 06 (2011).
- [31] Standard for Fixed Guideway Transit and Passangers Rails Systems. 130: Standard for Fixed Guideway Transit and Passangers Rails Systems.
- [32] Stefan Buchmueller und Ulrich Weidmann. Parameters of pedestrians, pedestrian traffic and walking facilities. Zurich: Institute for Transport Planning und Systems (IVT), Chair of Transport Systems, ETH Zurich, 2006.
- [33] John J. Fruin. Pedestrian planning and design. New York: Metropolitan Association of Urban Designers und Environmental Planners, 1971.

- [34] Armin Seyfried, Oliver Passon, Bernhard Steffen, Maik Boltes und Tobias Rupprecht.
 "New insights into pedestrian flow through bottlenecks". In: Transportation Science 43.3 (2009), S. 395-406.
- [35] Tobias Kretz, Anna Grünebohm und Michael Schreckenberg. "Experimental study of pedestrian flow through a bottleneck". In: (Journal of Statistical Mechanics: Theory and Experiment 10 (2006).
- [36] Department for cultur und media and sport, Hrsg. Guide to safety at sports grounds.5. Aufl. London: Stationary Office, 2008.
- [37] DIN Deutsches Institut f
 ür Normung e.V. DIN EN 13200-1: Zuschaueranlagen Teil 1: Kriterien f
 ür die r
 äumliche Anordnung von Zuschauerpl
 ätzen - Anforderungen. Berlin. Mai 2004.
- [38] I.S.T. Integrierte Sicherheits-Technik GmbH. Aseri 4.8c: Referenzhandbuch.
- [39] Marita Kersken-Bradley, Thilo A. Hoffmann und N. Waldau. Berechnung von Entleerungszeiten für Fallbeispiele: Forschungsbericht. Stuttgart: Fraunhofer-IRB-Verl., 2006.
- [40] Peter Spengler. "Bewertung der Möglichkeiten und Grenzen von ingenieurtechnischen Methoden als Nachweis der Personenrettung". Masterthesis. Magdeburg: Hochschule Magdeburg-Stendal, 2011.
- [41] I.S.T. Integrierte Sicherheits-Technik GmbH. Aseri 4.8c: Manual. 2011.
- [42] Ansgar Kirchner, Hubert Klüpfel, Katsuhiro Nishinari, Andreas Schadschneider und Michael Schreckenberg. "Simulation of competitive egress behavior: comparison with aircraft evacuation data". In: Physica A: Statistical Mechanics and its Applications 3-4 (2003), S. 689–697.
- [43] Sven Hebben. Auswertung für die Simulation der RiMEA Testfälle mit PedGo. 09.06.2006. URL: http://www.traffgo-ht.com/downloads/pedestrians/downloads/RiMEA% 20Testbericht%20PedGo.pdf (besucht am 12.07.2012).
- [44] Traffgo.HT GmbH. Benutzerhandbuch PedEd, PedGo, PedView. Duisburg. 2008.
- [45] Dirk Helbing und Péter Molnár. "Self-Organization Phenomena in Pedestrian Crowds". In: Self-organization of complex structures. Hrsg. von Frank Schweitzer. New York 1997, S. 569–577.
- [46] PTV Planung Transport Verkehr AG. VISSIM 5.40 Benutzerhandbuch. 2011.
- [47] Kai Bolay. "Nichlineare Phänomene in einem fluid-dynamischen Verkehrsmodell". Diplomarbeit. Stuttgart: Universität, November 1998.
- [48] Armin Seyfried, Bernhard Steffen und Thomas Lippert. "Basics of Modelling the Pedestrian Flow". In: Physica A 1 (2006), S. 232–238.
- [49] Dirk Helbing und Péter Molnár. "Social Force Model for Pedestrian Dynamics". In: Physical Review E 51.5 (1995), S. 4282–4286.
- [50] Jeanette Juilfs. Implementierung des Evakuierungsmodells von Predtetschenski und Milinski in Microsoft Excel 2000: Studienarbeit. Grin - Verlag für akademische Texte, 2005.
- [51] L. Audouin u.a. "Quantifying differences between computational results and measurements in the case of a large-scale well-confined fire szenario". In: Nuclear Engineering and Design 241 (2011), S. 18–31.
- [52] Tim Hering. "Untersuchung der Leistungsunterschiede zwischen Variationen des Vector Approximation File bei k-Nearest-Neighbor-Anfragen im hochdimensionalen Raum". Bachelorthesis. Magdeburg: Otto-von-Guericke-Universität, 2011.

- [53] Richard D. Peacock, Paul A. Renecke, William D. Davis und Walter W. Jones. "Quantifying Fire Model Evaluation Using Functional Analysis". In: Fire Safety Journal 33 (1999), S. 167–184.
- [54] Armin Seyfried und Andreas Schadschneider. "Empirical results for pedestrian dynamics and their implications for modeling". In: Networks and Heterogeneous Media 6.3 (2011), S. 545-560.
- [55] Tobias Kretz. "The Effect of Integrating Travel Time: preprint". In: 6th International Conference on Pedestrian and Evacuation Dynamics. 2012.
- [56] Armin Seyfried, Maik Boltes, Jens Kähler, Wolfram Klingsch, Andrea Portz, Tobias Rupprecht, Andreas Schadschneider, Bernhard Steffen und Andreas Winkens. "Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks". In: Pedestrian and evacuation dynamics 2008. Hrsg. von Wolfram Klingsch, Christian Rogsch, Andreas Schadschneider und Michael Schreckenberg. Berlin und Heidelberg: Springer, 2010, S. 145–156.
- [57] Anders Johansson. "Pedestrian Simulations with the Social Force Model". Masters Thesis. Dresden: Technische Universität, November 2004.
- [58] Jack Liddle, Armin Seyfried, Bernhard Steffen, Wolfram Klingsch, Tobias Rupprecht, Andreas Winkens und Maik Boltes. "Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations". In: Physica A (2011).
- [59] Florian Berchtold. "Entwicklung eines Verfahrens zur Identikation des Brandschadenrisikos in mechanisch ventilierten Räumen in Kernkraftwerken im Rahmen der probabilistischen Sicherheitsanalyse anlageninterner Brände". Masterthesis. Magdeburg: Otto-von-Guericke-Universität, 2011.

Glossar

Agenten

Agenten repräsentieren modellierte Individuen in einer Softwareumgebung. Im Gegensatz zu einer dynamischen Systemmodellierung besitzen die vielen Agenten des Systems Handlungs- und Enscheidungsmöglichkeiten. Aus der Summe der Interaktionen reagiert das Verhalten des Systems.

Bottleneck

Ein Bottleneck beschreibt im wörtlichen Sinne eine Verengung im Verlauf eines Fluchtweges. Aufgrund der reduzierten Kapazität treten in aller Regel vor einer Engstelle erhöhte Dichten und Selbstorganisationsphänomene von Fußgängermengen auf. Da sie häufig einen limitierenden Effekt für die Durchlassfähigkeit besitzen, gilt ihnen in der Begutachtung von Rettungswegsituationen ein besonderes Interesse.

Grundgeometrie

Moderne Gebäude bestehen aus einer Vielzahl architektonischer und bautechnischer zusammenhängender Detaillösungen, die ein komplexes System ergeben. Zur Betrachtung von Fußgängerphänomenen werden Geometrien auf ihre elementaren Bestandteile reduzuiert, analysiert und bewertet. Eine solche Grundgeometrie ist beispielsweise eine T-Situation, eine Engstelle oder ein Raum.

Massenveranstaltung

Eine Massenveranstaltung im Sinne der vorliegenden Arbeit beschreibt eine Zusammenkunft einer großen Personenanzahl in einem räumlich und zeitlich begrenztem Kontext aus einem gemeinsamen Grund. Beispiele für Massenveranstaltungen sind Konzerte, Sportereignisse aber auch Messen und Kundgebungen.

${\it Predtets chenski-Milinski-Areal}$

Das Predtetschenski-Milinski-Areal beschreibt einen Bereich zwischen günstig und ungünstig verlaufender Entleerungszeit. Zur Ermittlung wurden für die zeitliche Obergrenze Personen in Winterbekleidung (große projizierte Grundfläche und entsprechend hohe Platzbedarf) und für die zeitliche Untergrenze Personen in Sommerbekleidung (geringe projizierte Grundfläche mit geringerem Platzbedarf) angenommen. Sie dient der Einordnung der empirisch und rechnerisch gewonnenen Ergebnisse.

Quantil

Das Quantil ist ein Lagemaß in der Statistik. Es liegt zwischen 0 und 100. Durch das Quantil wird die Verteilung einer Zufallsvariablen in zwei Bereiche unterteilt. Links liegen alle Merkmalswerte unterhalb des Quantilswertes, rechts liegen alle Werte oberhalb. In dieser Arbeit wurde das 95%-Quantil verwendet. D.h. das 95% der durchgeführten 500 Spiele der Monte-Carlo-Simulation zu einem langsameren Entleerungsverlauf führten. Lediglich 5% der Spiele führten zu einem schnelleren Entleerungsverlauf.

Seed

Ein Seed ist der Startwert für deterministische Erzeugung von Pseudozufallszahlen. Da

Pseudozufallszahlen nicht zufällig, sondern Ergebnis eines deterministischen Algorithmus sind, können die Ergebnisse reproduziert werden. Ein solches Verfahren wird bei der Simulationssoftware PedGo eingesetzt.

Social-Force-Model

Das Social-Force-Model ist eine mathematische Beschreibung von Fußgängerverhalten mit Hilfe von Kraftvektoren. Die Bewegung einer Person wird dabei durch anziehende und abstoßende Kräfte in Richtung eines globalen Ziels ermittelt.

T-Situation

Die T-Situation beschreibt den bidirektionalen Zusammenfluss zweier Personenströme mit einer Richtungsänderung der Bewegungsrichtung um 90°.

Trajektorien

Eine Trajektorie (Bahnkurve) ist eine räumliche Kurve, in welcher sich ein Punkt (beispielsweise der Schwerpunkt eines Agenten oder der Sender eines Probanden im Experiment) bewegt. Zur Verfolgung der Bewegung von Probanden bzw. Agenten kann der Bewegungspfad als zeitabhängige Abfolge von Koordinaten dargestellt werden.

Wunschgeschwindigkeit

Die Wunschgeschwindigkeit ist diejenige Geschwindigkeit, bei der das Verhältnis von aufgewendeter Energie und zurückgelegter Strecke in einem günstigen Verhältnis steht. Sie ist eine von individuellen Parametern abhängige Eingabegröße und wird in aller Regel über eine bestimmte Verteilung ausgewählt.

zellularer Automat

Ein zellularer Automat wird zur Modellierung in räumlich diskreten Simulationsmodellen eingesetzt. Der betrachtete Raum wird mit Hilfe einer bestimmten Gitterweite in Zellen unterteilt, deren Entwicklung vom eigenen Zustand und dem Zustand der Nachbarzellen abhängig ist.

Zähllinie

Die Zähllinie beschreibt einen Querschnitt, über den der Personenstrom gemessen wird. In den verwendeten Simulationsprogrammen existieren unterschiedliche Möglichkeiten diese zu realisieren. Während in Viswalk Messlinien implementiert sind, erfolgt die Detektion in PedGo mit Hilfe virtueller Türen und in Aseri durch Zählung des Personendurchgangs durch reale Türen.

Stichwortverzeichnis

Übergangswahrscheinlichkeit, 23

Abwärtsbewegung, 16 Aseri, 21, 39 Attraktion, 27 Aufwärtsbewegung, 16

Beschleunigungsgleichung, 26 Bewegungsbedingungen, 29, 31 Bewegungsgleichung, 26 Bewegungsintensität, 30 Bewegungsmodus, 23, 31, 39, 49 Bottleneck, 35, 57

Dichte, 15, 17 Distanz, euklidische, 34 driving force, 27 Durchlassfähigkeit, 30

Einzelbewegung, 29 Entnahmebereich, 44

Fluchtwegewahl, 22Fluktuationsterm, 27Fluss, 16Fluss, spezifischer, 16, 49

Gehgeschwindigkeit, 14–17, 31 Geschwindigkeitsverteilung, 40, 43 Grenzdichte, 14 Grundgeometrie, 20, 29

Individualmodell, 21, 23 International Maritime Organization, 43

Körperellipse, 14, 21, 29 Kraft, abstoßend, 27

Logpoint, 50

Massenbewegung, 29 Mehrfachzählung, 50

PedGo, 23, 39 Personenstrom, 29 Personenstromvereinigung, 36, 37 Platzbedarf, 14 Platzbedarf, dynamisch, 14 Platzbedarf, statisch, 14 Potential, 24 Predtetschenski-Milinski-Areal, 40 Produkt, inneres euklidisches, 34

Rückstaugeschwindigkeit, 30, 32 Randschichtbreite, 29 Reaktionszeit, 18, 38 RiMEA, 17

Schulterbreite, 21 Sensitivität, 52 Social-Force-Model, 26, 53, 71 Stau, signifikant, 17 Stauabbaugeschwindigkeit, 31, 32 Steigungswinkel, 46 Strömungsmodell, dynamisches, 30

T-Situation, 36 Tür, virtuell, 50

Update-Algorithmus, 23

Vereinigung, 31 Verhaltensparameter, 14 Viswalk, 26

Wunschgeschwindigkeit, 15, 17, 22, 27, 46

Y-Situation, 36

zellularer Automat, 23

A Simulationsergebnisse

A.1 Simulations
ergebnisse Geo $1\mathrm{a}$

	G	ao 1a - 13	20 m × 4 00 r	n	Geo 1a - 120m x 4.00m								
t/s	Empirie	Aseri	PedGo	Viswalk	Empirie	Aseri	PedGo	Viswalk	Empirie	Aseri	PedGo	Viswalk	
<i>'</i>	/P	/P	/P	/P	/P	/P	/P	/P	/P	/P	/P	/P	
1	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	
3	3	0	0	1	0	0	0	0	0	0	0	0	
4	8	1	0	4	3	0	0	1	0	0	0	2	
5	12	3	0	6	5	1	0	4	4	1	0	5	
6	15	6	1	8	10	5	0	7	8	6	0	9	
7	18	8	2	11	15	9	0	10	14	11	0	13	
8	21	10	2	14	18	13	1	13	20	15	0	16	
9	26	13	5	15	21	17	1	16	26	20	0	20	
10	28	10	0 Q	20	20	20	3 5	19	30 24	24	5	24	
12	33	20	10	20	33	24	7	24	40	28 32	9	31	
13	35	22	12	25	37	31	10	27	43	37	12	35	
14	38	24	14	27	39	34	13	30	47	40	15	38	
15	41	27	16	29	42	36	15	33	52	44	20	42	
16	44	29	19	31	47	40	17	35	56	48	23	45	
17	47	31	22	34	50	43	21	38	60	51	27	49	
18	50	34	23	36	52	45	22	41	65	55	30	52	
19	52 54	36	24	38	55 FO	48	24	45	68 72	58	34	56 60	
20	54 56	39 41	20 27	41	59 69	51 54	27	47	13 79	62 66	38 49	64	
21	50	41	30	45	65	57	29 32	53	81	69	42	68	
23	61	46	31	48	69	60	34	55	85	72	48	71	
24	63	48	33	51	72	63	37	58	88	76	51	74	
25	65	50	35	53	76	67	39	61	91	79	54	79	
26	67	53	37	55	78	69	42	64	94	82	57	82	
27	69	55	39	57	81	72	44	67	97	86	60	86	
28	71	57	41	59	83	75	47	69	102	90	64	89	
29	73	60	43	62	86	78	51	72	105	93	67	93	
30 21	74	62 65	44 45	64 66	89 02	80	55 57	75	108	97	71	96 100	
31 39	80	67	40 46	69	92 94	00 86	57 60	80	111	100	79	100	
33	82	69	48	71	96	89	61	83	114	104	84	105	
34	85	72	50	74	99	92	65	86	120	110	87	110	
35	87	74	52	76	101	94	68	88	123	114	89	113	
36	90	76	54	78	104	98	71	91	127	117	93	116	
37	92	79	57	81	106	100	73	94	130	121	94	119	
38	94	81	58	82	110	103	75	96	131	124	98	122	
39	97	84	61 69	85	112	106	78	99	135	128	103	125	
40	99	80 80	02 64	0/ 00	114	108	80 84	102	130	131	112	120	
42	101	91	67	90 92	119	114	87	104	135	134	115	134	
43	105	94	70	94	121	116	89	109	142	140	118	136	
44	107	96	73	96	124	119	90	112	145	144	120	139	
45	109	98	74	98	126	122	93	114	148	148	122	142	
46	111	101	75	100	128	125	97	116	150	152	125	145	
47	113	103	76	102	131	127	100	118	153	155	128	147	
48	115	106	77	104	134	130	103	121	157	159	133	149	
49 50	11 <i>1</i> 119	108	80 82	100	130 137	133 136	100	125	109 162	102	130	152 154	
50	122	113	84	110	140	130	110	125	164	169	141	154	
52	125	115	86	112	143	142	113	129	167	173	144	159	
53	126	118	87	114	146	144	116	131	170	176	146	161	
54	128	120	89	116	147	148	117	133	170	178	150	163	
55	131	123	91	118	150	150	120	136	174	179	154	165	
56	132	125	93	120	151	153	122	138	176	180	157	167	
57	134	127	95	122	154	156	124	140	177	180	160	169	
58 50	136	130	97	124	155	159	126	142	178	180	165	171	
09 60	130 140	134 134	99 101	120	109 161	102 165	129	144 146	178	180	108	174	
61	143	134	103	129	163	168	135	148	178	180	174	175	
62	143	139	106	131	165	171	139	150	178	180	179	177	
63	146	142	108	133	167	174	142	152	178	180	180	178	
64	148	144	110	135	169	176	145	153	178	180	180	179	
65	149	146	113	136	171	178	148	155	178	180	180	180	
66	151	149	115	138	171	180	151	157	178	180	180	180	
67	152	151	117	139	174	180	154	159	178	180	180	180	
69 69	154 156	153 156	118 191	141 143	174 175	180	157	163	178	180	180	180	
70	157	158	123	144	177	180	162	164	178	180	180	180	
· -													

Tabelle 21: Geo 1a - Simulationsergebnisse

	G	,20 m × 4,00 i	n	G	eo 1a - 1	$20 \mathrm{m} \times 4,00 \mathrm{m}$	m	Geo 1a - 1,20 m × 4,00 m				
t /s	Empirie /P	Aseri /P	m PedGo / P	${f Viswalk}/{f P}$	Empirie /P	Aseri /P	PedGo /P	Viswalk /P	Empirie /P	Aseri /P	m PedGo / P	Viswalk /P
71	159	160	124	146	178	180	164	165	178	180	180	180
72	161	163	126	148	178	180	168	167	178	180	180	180
73	163	165	129	149	178	180	171	169	178	180	180	180
74	164	167	130	151	178	180	173	170	178	180	180	180
75	166	170	133	152	178	180	176	172	178	180	180	180
76	168	172	134	154	178	180	179	173	178	180	180	180
77	170	174	137	155	178	180	180	174	178	180	180	180
78	171	176	138	157	178	180	180	176	178	180	180	180
79	172	178	140	158	178	180	180	177	178	180	180	180
80	174	179	142	160	178	180	180	178	178	180	180	180
81	175	180	143	161	178	180	180	179	178	180	180	180
82	176	180	145	163	178	180	180	179	178	180	180	180
83	178	180	148	164	178	180	180	180	178	180	180	180
84	178	180	150	166	178	180	180	180	178	180	180	180
85	178	180	152	167	178	180	180	180	178	180	180	180
86	178	180	154	168	178	180	180	180	178	180	180	180
87	178	180	155	169	178	180	180	180	178	180	180	180
88	178	180	158	170	178	180	180	180	178	180	180	180
89	178	180	158	171	178	180	180	180	178	180	180	180
90	178	180	161	172	178	180	180	180	178	180	180	180

Tabelle 21: Geo 1a - Simulationsergebnisse

A.2 Simulations ergebnisse Geo 1b

Tabelle 22:	Geo	1b -	Simulations	sergebnisse
-------------	-----	------	-------------	-------------

	Geo 1b - 1,20 m × 0,06 m					eo 1b - 1,	20 m × 2,00 i	m	Geo 1b - 1,20 m × 4,00 m			
t/s	Empirie	Aseri	PedGo	Viswalk	Empirie	Aseri	\mathbf{PedGo}	Viswalk	Empirie	Aseri	PedGo	Viswalk
	/P	/P	$/\mathrm{P}$	/P	$/\mathrm{P}$	/P	$/\mathrm{P}$	/P	/P	/P	$/\mathrm{P}$	/P
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	2	0	0	0	1
4	0	0	0	3	0	0	0	4	0	0	0	4
5	0	3	0	4	0	3	0	6	0	3	0	6
6	0	5	0	6	0	6	0	9	0	6	0	9
7	0	7	1	8	0	8	1	11	0	8	0	11
8	4	10	2	10	3	10	3	14	0	10	0	13
9	7	12	3	13	6	12	4	16	3	12	0	16
10	11	14	5	15	10	15	6	19	7	15	0	18
11	15	17	7	17	12	17	9	21	12	17	3	21
12	19	19	9	20	15	19	11	24	14	19	5	23
13	22	22	10	21	17	22	14	26	18	22	7	26
14	26	24	13	24	20	24	16	29	20	24	9	28
15	30	27	16	26	23	26	19	32	23	26	12	30
16	32	29	17	28	26	29	22	34	27	28	14	33
17	34	32	20	30	29	31	24	36	29	31	15	35
18	38	34	23	33	31	34	26	39	31	33	17	37
19	42	37	25	35	33	36	28	42	34	35	18	40
20	45	39	27	38	36	38	31	45	37	38	21	42
21	47	42	30	40	38	40	33	47	40	40	23	44
22	49	44	32	42	41	43	36	50 50	43	43	25	47
23	53	46	35	45	43	45	39	53	45	45	27	49
24	54	49	37	47	40	48	40	00 F0	49	48	30	01 50
20	59	51	40	49	48	50	40	08 C1	50	50 50	33	33 FC
20	65	54 56	42	54 54	50 50	02 55	43	62	03 54	52 55	34	50 59
21	68	50	40	56	56	57	40	66	56	57	20	60
20	70	61	40 50	50	58	60	40 51	68	60	60	35 41	63
20	74	63	53	61	59	62	54	71	61	62	41	65
31	76	65	56	64	61	64	57	73	63	64	45	67
32	79	68	58	66	64	67	59	76	65	67	46	69
33	82	71	61	68	66	69	61	78	68	69	48	72
34	84	73	63	70	68	71	64	81	70	71	49	74
35	87	75	66	73	70	74	65	84	73	74	50	76
36	89	78	69	76	73	76	68	86	76	76	52	79
37	92	80	72	78	75	79	69	89	78	79	54	81
38	93	82	75	80	77	81	72	91	79	81	57	83
39	96	85	77	82	79	83	74	93	81	84	60	85
40	99	87	80	84	81	85	76	96	83	86	62	87
41	102	90	83	87	84	88	78	99	86	89	64	90
42	104	92	86	89	85	90	80	101	88	91	66	92
43	106	95	89	91	87	92	82	103	90	93	68	94
44	109	97	92	94	90	94	84	105	92	96	71	96
45	111	99	94	96	92	97	87	107	95	98	74	98

	Geo 1b - 1,20 m × 0,06 m				Geo 1b - 1	$1,20 \mathrm{m} \times 2,0$	0 m	Geo 1b - 1,20 $m\times4,00m$				
t / s	Empiri	ie Aseri	PedGo	Viswalk	Empir	ie Aseri	PedGo	Viswalk	Empir	ie Aseri	PedGo	Viswalk
	/P	/P	/P	/P	/P	/P	$/\mathrm{P}$	/P	/P	/P	$/\mathbf{P}$	/P
46	114	102	97	98	94	99	90	110	98	101	77	100
47	117	104	99	100	97	101	92	112	99	103	79	102
48	118	107	102	102	98	104	94	114	101	105	80	104
49	121	109	105	105	100	106	96	116	104	108	81	106
50	124	112	108	106	103	108	99	118	105	110	84	108
51	126	114	110	108	105	111	100	121	108	113	86	110
52	128	117	113	111	107	113	103	123	110	115	87	112
53	129	119	115	112	110	115	105	125	111	117	89	114
54	131	121	118	114	112	118	108	127	113	119	92	116
55	134	124	121	116	113	120	110	129	115	122	94	118
56	137	126	124	118	116	123	112	131	118	124	97	119
57	138	129	127	120	118	125	114	133	119	127	100	121
58	141	131	130	122	121	127	115	134	122	129	102	123
59	143	134	133	124	122	130	116	137	123	131	104	125
60	145	136	135	126	125	132	119	139	126	134	106	127
61	147	138	138	128	127	135	122	141	128	136	108	129
62	151	141	140	130	129	137	123	143	131	138	109	131
63	153	143	143	132	132	139	126	145	132	141	112	132
64	154	145	146	134	133	141	128	146	135	143	114	134
65	157	148	149	136	135	143	129	148	136	146	115	135
66	158	150	151	137	137	146	131	150	137	148	117	137
67	159	153	153	139	139	148	132	152	140	151	119	139
68	162	155	156	140	141	150	134	153	142	153	121	140
69	164	157	158	142	141	152	136	155	142	155	124	142
70	160	160	161	144	145	100	138	107	144	107	124	144
70	109	164	105	140	140	107	139	100	140	160	127	140
12	172	164	167	147	147	160	142	169	140	102	120	147
73	175	160	170	149	149	164	140	162	151	167	134	140
75	176	103	173	150	152	167	140	165	155	170	134	151
76	178	171	175	154	155	170	151	166	156	173	138	151
77	178	174	178	155	157	171	154	168	158	173	141	155
78	178	178	180	157	159	174	156	169	159	176	142	156
79	178	179	180	159	161	175	158	171	160	178	144	157
80	178	180	180	160	163	177	159	172	162	179	145	159
81	178	180	180	162	165	178	161	173	163	180	147	160
82	178	180	180	164	166	180	164	174	164	180	149	162
83	178	180	180	165	168	180	165	175	167	180	152	163
84	178	180	180	167	170	180	168	176	167	180	154	165
85	178	180	180	168	171	180	171	177	169	180	156	166
86	178	180	180	169	173	180	173	179	171	180	158	167
87	178	180	180	171	175	180	175	179	173	180	161	168
88	178	180	180	172	176	180	177	180	174	180	161	170
89	178	180	180	173	178	180	179	180	175	180	163	171
90	178	180	180	174	178	180	180	180	176	180	166	172
91	178	180	180	175	178	180	180	180	177	180	168	173
92	178	180	180	177	178	180	180	180	178	180	170	174
93	178	180	180	178	178	180	180	180	178	180	172	175
94	178	180	180	178	178	180	180	180	178	180	174	176
95	178	180	180	179	178	180	180	180	178	180	176	177
96	178	180	180	180	178	180	180	180	178	180	179	178
97	178	180	180	180	178	180	180	180	178	180	180	179
98	178	180	180	180	178	180	180	180	178	180	180	180
99	178	180	180	180	178	180	180	180	178	180	180	180
100	178	180	180	180	178	180	180	180	178	180	180	180

Tabelle 22: Geo 1b - Simulationsergebnisse

A.3 Simulations ergebnisse Geo2

Tabelle 23: Geo2 - Simulations
ergebnisse

		Geo 2	- 0,80 m			Geo 2	- 1,20 m		Geo 2 - 2,40 m				
t /s	Empirie /P	Aseri / P	PedGo /P	Viswalk /P	Empirie /P	Aseri /P	PedGo /P	Viswalk /P	Empirie /P	Aseri /P	PedGo /P	Viswalk / P	
1	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	
7	0	0	0	1	0	0	0	1	0	0	0	1	
8	0	0	0	1	1	0	0	2	0	0	0	2	
9	0	0	0	3	4	0	0	3	0	0	0	4	
10	0	0	0	4	5	0	0	4	0	0	0	6	

11 0 0 0 7 0 0 1 4 12 2 1 0 8 1 1 9 0 2 2 1 13 4 2 0 11 15 2 1 12 0 1 4 14 14 16 6 1 13 23 24 0 1 7 25 17 19 8 2 23 0 0 3 25 3 14 8 25 18 22 11 3 24 37 14 15 7 4 14 8 14 44 14	t /s	Empirie /P	Geo 2 Aseri /P	- 0,80 m PedGo /P	Viswalk /P	Empirie /P	Geo 2 - Aseri /P	- 1,20 m PedGo /P	Viswalk / P	Empirie /P	Geo 2 Aseri /P	- 2,40m PedGo /P	Viswalk /P
12 2 1 0 8 11 1 1 10 13 11 11 10 13 11 11 10 13 11	11	0	0	0	6	8	0	0	7	0	0	1	8
13 6 2 0 15 2 1 12 0 3 4 14 14 14 4 1 150 25 5 14 8 21 14 16 4 1 19 25 8 2 12 0 8 1 16<	12	2	1	0	8	11	1	1	9	0	2	2	11
110 0 3 0 2 15 0 5 8 3 25 164 16 4 1 15 15 3 14 8 25 17 18 8 2 22 0 11 8 25 18 21 13 4 24 33 11 6 28 9 15 14 35 13 14 1 37 44 15 15 15 14 25 14 36 23 7 14 37 44 25 14 51 47 42 22 12 36 24 38 24 30 25 13 36 14 37 38 14 43 34 34 34 25 46 34 25 35 35 35 35 36 36 36 36 36	13	6	2	0	10	15	2	1	12	0	3	4	14
16 16 1 <th1< th=""> 1 1 1</th1<>	14	8 11	3 4	1	13 15	20	4	2	15	0	5 8	4 5	21
17 10 8 2 11 3 24 30 11 6 28 9 11 30 10 25 12 7 27 37 13 7 32 16 30 11 36 23 14 4 37 44 13 7 32 15 14 44 23 37 14 47 23 36 29 15 44 24 30 21 14 31 44 20 14 47 42 23 24 61 24 30 23 14 31 34 <	16	16	6	1	19	25	8	2	22	0	11	7	25
18 22 11 3 24 33 11 6 28 14 10 13 64 21 28 14 8 31 41 15 8 35 210 21 23 34 44 40 22 34 19 12 37 13 44 41 12 35 23 24 44 23 37 23 13 44 50 25 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 56	17	19	8	2	22	30	9	3	25	3	14	8	28
19 25 12 7 37 13 7 32 16 20 14 40 210 38 16 11 337 44 138 11 30<	18	22	11	3	24	33	11	6	28	9	17	10	32
20 28 14 8 30 41 15 8 35 23 23 14 40 212 31 15 18 30 <td>19</td> <td>25</td> <td>12</td> <td>7</td> <td>27</td> <td>37</td> <td>13</td> <td>7</td> <td>32</td> <td>16</td> <td>20</td> <td>11</td> <td>36</td>	19	25	12	7	27	37	13	7	32	16	20	11	36
10 31 10 10 37 14 10 10 10 10 10 10 10 21 31 11 14 30 14 47 42 12 12 14 30 15 43 54 14 47 42 12 12 13 216 42 25 15 43 15 43 14 30 65 52 38 44 30 65 216 43 13 217 44 13 14 14 15 16 17 18 14 30 17 75 44 30 27 17 31 10 45 35 10 85 46 42 85 56 58 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45	20	28	14	8	30	41	15	8	35	23	23	14	40
15 37 11 14 30 46 13 14 47 12 13 14 14 12 12 13 14 13 14 13 15 13 15 13 15 13 15 13 16 15 14 13 16 16 17 12 14 13 16 17 14 13 16 17 14 13 13 14 13 14 13 14 13 13 14 13 14 13 13 14 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14<	21	31 34	10	11	33 37	44	18	11	39 43	30 36	26	15 19	44
14 99 23 15 43 54 45 14 47 85 24 57 26 43 25 19 40 61 29 23 59 59 41 30 65 27 48 31 23 53 66 32 28 51 34 73 28 51 34 27 50 75 30 67 72 46 34 73 24 63 75 30 77 78 30 77 78 40 77 90 58 47 78 24 63 44 73 89 48 45 88 100 61 44 90 113 64 70 100 137 70 100 137 70 100 137 100 137 100 137 100 137 100 137 100 137	23	37	21	14	39	49	23	14	43	42	32	22	52
25 42 25 19 40 56 27 20 55 52 38 41 30 65 27 48 31 23 53 66 32 20 63 60 44 38 65 27 48 31 23 53 66 32 20 63 60 44 38 66 38 34 37 67 75 83 63 45 47 31 60 42 85 66 81 43 39 75 83 61 46 61 45 45 33 67 53 48 84 60 55 60 113 130 61 45 100 34 70 63 67 90 110 157 73 122 150 85 86 120 163 163 163 163 163	24	39	23	15	43	54	25	18	51	47	35	24	57
26 43 28 21 49 61 29 23 59 50 44 33 65 27 48 31 23 53 66 32 26 63 64 44 33 65 280 51 37 53 66 57 66 64 20 75 65 52 37 75 85 55 58 45 91 331 67 48 41 73 89 46 42 83 90 55 58 45 91 344 70 50 84 60 92 80 60 110 111 60 1101 344 60 55 80 61 65 100 113 100 113 100 114 43 111 100 113 100 114 43 111 100 100 100 100 100<	25	42	25	19	46	59	27	20	55	52	38	27	61
27 48 31 33 33 66 32 28 63 66 44 33 67 31 60 32 70 34 30 71 75 74 74 75 75 37 75 74 76 76 75 74 76 76 75 74 76 77 131 76 77 134 43 101 73 66 102 126 165 77 134 44 103 76 112 66 75 126	26	43	28	21	49	61	29	23	59	59	41	30	65
248 34 24 35 0 25 33 0 1 26 49 33 16 50 68 32 62 75 40 33 07 15 85 16 16 41 39 75 85 54 45 87 313 07 48 41 73 80 48 45 88 100 61 45 91 314 70 50 44 76 92 50 50 92 107 64 40 104 316 74 53 44 80 55 50 83 86 61 104 128 73 62 113 316 74 53 50 87 101 88 61 104 128 73 62 113 310 75 83 130 130 150 141 130	27	48	31	23	53	66 70	32	26	63 67	66 79	44	33	69 73
10 16 32 32 42 17 54 55 43 43 31 60 42 33 66 81 43 39 70 90 55 42 87 32 63 45 38 60 85 46 42 83 95 55 45 10 34 70 50 44 76 92 50 50 92 107 64 48 95 35 74 53 44 76 92 50 50 92 100 10 110	28	51 54	34	27	50 50	70	34 27	30	07 71	72	46	34	73 79
11 00 42 35 42 87 33 67 48 41 73 80 48 45 83 100 61 48 95 334 67 48 41 73 80 48 45 53 96 115 61 48 95 346 78 55 51 88 80 94 54 53 96 115 67 55 100 37 80 57 51 87 101 58 61 104 123 73 62 113 30 67 63 67 64 69 73 112 123 74 130 41 93 68 69 131 130 83 130 158 81 143 43 107 79 72 113 130 80 132 161 130 161 161 </td <td>29 30</td> <td>54 58</td> <td>39</td> <td>32</td> <td>62</td> <td>78</td> <td>40</td> <td>37</td> <td>75</td> <td>83</td> <td>4<i>5</i> 52</td> <td>39</td> <td>83</td>	29 30	54 58	39	32	62	78	40	37	75	83	4 <i>5</i> 52	39	83
32 67 48 41 73 85 46 42 83 95 84 45 91 34 70 50 44 76 92 50 50 92 107 64 50 104 34 70 50 44 84 66 57 100 121 70 59 109 348 84 60 55 90 1016 61 65 100 121 76 66 113 348 84 66 65 90 101 60 75 127 150 85 74 152 41 90 68 62 97 115 60 75 127 156 85 74 153 42 97 78 66 135 164 90 81 122 43 117 818 80 123 82 133 <th< td=""><td>31</td><td>60</td><td>42</td><td>35</td><td>66</td><td>81</td><td>43</td><td>39</td><td>79</td><td>90</td><td>55</td><td>42</td><td>87</td></th<>	31	60	42	35	66	81	43	39	79	90	55	42	87
33 67 48 41 73 89 48 45 88 100 61 48 95 35 74 33 48 80 94 54 53 96 115 67 55 104 37 80 37 51 87 101 58 61 104 128 73 62 113 38 84 60 55 90 105 61 65 109 112 78 68 122 41 63 67 64 104 117 62 75 135 156 87 74 138 44 105 76 70 112 128 75 83 130 156 90 81 138 44 105 76 70 112 138 82 92 143 170 96 85 145 44 105 8	32	63	45	38	69	85	46	42	83	95	58	45	91
34 70 50 44 76 92 50 50 92 107 64 50 104 35 74 53 84 80 94 56 37 100 121 67 39 104 36 60 57 101 66 73 107 84 73 64 113 38 60 56 57 106 63 107 84 113 133 78 64 127 41 90 66 60 97 112 66 73 117 143 81 77 134 42 97 70 66 108 123 75 83 130 158 90 81 134 43 101 73 66 108 123 75 83 130 154 94 81 134 144 145 141 145 141	33	67	48	41	73	89	48	45	88	100	61	48	95
33 14 53 56 153 96 113 67 53 109 36 86 57 53 88 98 98 66 57 100 113 66 110 121 75 62 113 38 87 66 57 50 101 156 65 100 121 75 62 113 40 97 66 60 97 112 66 73 117 143 81 71 123 42 97 70 66 104 117 72 79 136 85 74 93 144 105 76 70 112 128 78 86 135 164 94 83 142 44 105 76 70 112 128 78 86 135 164 94 94 94 94 94 94 <td>34</td> <td>70</td> <td>50 50</td> <td>44</td> <td>76</td> <td>92</td> <td>50</td> <td>50 50</td> <td>92</td> <td>107</td> <td>64</td> <td>50</td> <td>100</td>	34	70	50 50	44	76	92	50	50 50	92	107	64	50	100
10 10 10 10 100 110	35 26	74	53	48 50	80	94	54 56	53 57	96 100	115 191	67 70	55 50	104
84 60 55 90 105 61 65 109 122 76 66 117 40 90 66 60 97 112 66 73 117 143 81 71 123 41 93 68 62 101 115 69 75 117 143 81 71 123 42 97 70 66 104 117 72 79 126 156 87 77 134 44 105 76 70 112 128 78 86 135 164 94 83 142 45 107 79 72 112 133 82 92 143 177 96 89 162 46 111 81 74 113 144 93 105 160 190 110 100 162 157 143 163 107 <td>37</td> <td>80</td> <td>57</td> <td>50</td> <td>83 87</td> <td>101</td> <td>58</td> <td>61</td> <td>100</td> <td>121</td> <td>73</td> <td>62</td> <td>113</td>	37	80	57	50	83 87	101	58	61	100	121	73	62	113
99 87 63 57 94 109 64 09 113 139 78 68 122 41 93 68 62 101 115 69 75 122 156 85 77 134 43 101 73 66 108 123 75 83 130 156 87 77 134 44 105 76 70 115 130 80 89 139 170 96 85 142 45 107 79 72 115 130 82 92 143 177 99 89 152 46 117 84 80 122 180 100 163 160 163 413 130 91 133 145 91 102 113 160 162 413 133 97 130 143 160 163 11	38	84	60	55	90	105	61	65	109	132	76	66	117
410 930 666 601 917 112 660 73 117 143 81 71 126 412 97 70 66 104 117 72 79 126 156 87 77 134 413 105 76 70 112 128 78 86 135 164 94 83 142 445 107 76 70 112 128 78 86 135 164 94 83 142 45 117 84 84 119 133 82 92 143 177 99 89 150 44 117 86 84 126 140 88 98 152 183 104 95 150 51 129 90 91 133 140 93 105 160 193 106 107 133 105 161 175 225 122 115 123 53 133 100 105	39	87	63	57	94	109	64	69	113	139	78	68	122
41 93 68 62 101 115 69 75 122 150 85 74 130 43 101 73 66 108 123 75 83 130 158 90 81 138 444 105 76 70 112 128 78 86 135 164 94 83 142 45 107 79 72 115 130 80 89 130 170 96 85 146 46 117 86 84 122 136 86 94 148 182 101 91 154 48 172 88 87 130 145 91 102 156 133 107 98 162 50 127 90 91 133 149 93 105 160 199 110 100 160 121 151 171 182 51 143 103 164 174 112 177 <td>40</td> <td>90</td> <td>66</td> <td>60</td> <td>97</td> <td>112</td> <td>66</td> <td>73</td> <td>117</td> <td>143</td> <td>81</td> <td>71</td> <td>126</td>	40	90	66	60	97	112	66	73	117	143	81	71	126
12 97 70 66 104 117 72 79 126 158 87 77 114 443 105 76 70 112 128 75 83 135 164 94 83 142 445 107 79 72 112 128 78 86 135 164 94 83 142 446 111 81 74 119 133 82 92 143 177 99 89 150 447 115 84 80 122 136 86 94 148 182 104 95 159 449 122 88 87 133 149 93 105 160 103 106 106 166 177 143 103 170 166 174 153 160 107 114 171 118 101 116 117 128 118 128 128 118 129 125 113 117 186 <	41	93	68	62	101	115	69	75	122	150	85	74	130
44 165 76 79 79 70 85 130 193 90 81 183 142 45 107 79 72 115 130 80 89 133 170 96 85 146 46 111 81 74 115 84 80 122 136 86 94 148 1170 96 85 146 47 115 84 80 122 136 86 94 148 117 99 89 150 50 127 90 91 133 149 93 160 199 100 116 166 199 100 116 174 174 51 129 92 96 137 153 96 1107 167 212 116 174 53 133 150 167 107 119 175 212 131	42	97	70	66 66	104	117	72	79	126	156	87	77 01	134
107 199 72 115 130 80 80 139 170 96 85 146 46 111 81 74 119 133 82 92 143 177 99 89 150 47 115 84 80 122 136 86 94 148 182 101 91 154 48 117 86 84 126 140 88 98 152 189 104 95 159 50 127 90 91 133 149 93 105 166 193 107 163 107 163 107 163 107 170 163 103 170 55 133 130 108 106 116 171 212 116 107 172 116 122 125 122 117 186 55 143 106 112 153 </td <td>43 44</td> <td>101</td> <td>73 76</td> <td>00 70</td> <td>108</td> <td>123</td> <td>70 78</td> <td>83 86</td> <td>130</td> <td>108 164</td> <td>90 97</td> <td>81 83</td> <td>138</td>	43 44	101	73 76	00 70	108	123	70 78	83 86	130	108 164	90 97	81 83	138
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	45	105	79	70	112	130	80	89	139	170	94 96	85	142
47 115 84 80 122 136 86 94 148 182 101 91 154 48 112 88 87 130 145 91 102 156 103 107 98 162 50 122 88 87 130 145 91 102 156 193 110 100 100 106 51 129 92 95 137 153 96 107 163 206 113 103 170 52 132 95 99 140 156 99 110 167 212 116 107 174 53 135 97 103 143 160 102 114 171 218 119 112 178 54 106 112 153 177 110 123 183 237 128 121 186 55 113 120 133 172 110 123 183 237 128 131 125 133 56 155 113 120 133 117 112 129 190 246 133 130 197 59 155 113 124 166 185 120 134 198 256 134 130 197 66 164 121 131 172 196 123 138 202 136 134 <td>46</td> <td>111</td> <td>81</td> <td>74</td> <td>119</td> <td>133</td> <td>82</td> <td>92</td> <td>143</td> <td>177</td> <td>99</td> <td>89</td> <td>150</td>	46	111	81	74	119	133	82	92	143	177	99	89	150
48 117 86 84 126 140 88 98 152 189 104 95 159 50 127 90 91 133 149 93 105 160 199 110 100 166 51 127 90 95 137 153 96 107 163 206 113 103 107 174 53 135 97 103 143 160 102 114 171 212 116 107 174 54 139 100 106 147 163 105 116 175 225 122 117 186 55 141 103 108 150 167 112 127 187 241 130 125 133 56 145 113 156 174 112 127 187 241 130 125 133 57 148 108 153 151 121 184 230 136 13	47	115	84	80	122	136	86	94	148	182	101	91	154
49 122 88 87 130 145 91 102 156 193 107 98 162 50 127 90 91 133 149 93 160 160 199 110 100 166 170 163 206 113 103 170 165 99 110 167 121 116 107 174 23 183 100 106 147 163 105 116 175 225 117 182 182 181 117 182 135 121 183 237 122 115 182 183 137 128 121 189 133 130 197 193 135 116 112 133 130 197 133 130 121 184 143 200 133 133 130 197 135 135 133 130 134 204 143 206 134 130 135 133 130 131 130 131 130 131	48	117	86	84	126	140	88	98	152	189	104	95	159
50 127 90 91 133 149 93 105 100 199 110 100 106 51 132 95 99 140 156 99 110 167 212 116 107 174 53 135 97 103 143 160 102 114 171 218 119 112 178 54 139 100 106 147 163 105 116 177 212 115 182 55 141 106 112 153 167 107 119 179 225 117 188 57 148 106 113 156 174 112 127 187 241 130 125 193 58 152 111 117 160 179 115 129 190 246 133 130 197 59 155 113 120 163 181 117 132 198 256 138 134 200 61 162 118 127 169 190 123 138 205 269 144 143 208 62 164 121 131 172 194 125 143 290 144 148 212 63 167 124 135 175 198 136 2129 279 166 150 229	49	122	88	87	130	145	91	102	156	193	107	98	162
1129 92 93 137 133 90 100 163 200 113 103 170 52 132 95 93 140 156 99 110 167 212 116 107 174 53 135 97 103 143 160 102 114 171 212 115 182 55 141 103 108 150 167 107 119 179 232 125 117 186 56 144 108 113 156 174 112 127 187 241 130 125 193 57 148 108 113 156 174 112 127 186 133 130 197 134 138 202 126 134 120 133 134 120 143 128 144 208 143 208 145 145 212 146 135 145 212 146 145 212 156 145	50	127	90	91 07	133	149	93	105	160	199	110	100	166
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51 52	129	92	90 90	137	155	90	1107	167	200 212	113	103	170
54139100106147163105116175225122115182 55 141103108150167107119179222125117186 56 145106112153172110123183237128121189 57 148108113156174112127187241130125193 58 152111117160179115129190246133130197 59 1551131201631811171321952521361342006015911612416618512013419825613913920461162118127169190123138202263142143208621641211311721941251462092741481452126417112613817820113015121227915015021966177131145184206136158219288157157226671811331501872081381632222951601622397019314015716	53	135	97	103	143	160	102	110	171	212	110	112	174
55141103108150167107119179232125117186 56 145106112153172110123183237128121189 57 148108113156174112127187241130125193 58 152111117160179115129190246133130197 59 155113120163181117132195252136134200 60 159116124166185120134198256139139204 61 162118127169190123138205269145145212 63 167124135175198128146209274148147215 64 171126138175198133154216285154153222 66 174131145184206136158219288157157226 67 181133150187208138163223295160162229 68 185135133144166226297162166232 70 193140157196	54	139	100	106	147	163	105	116	175	225	122	115	182
56 148 106 112 153 172 110 123 183 237 128 121 189 57 148 108 111 117 160 179 115 129 190 246 133 130 197 59 155 113 120 163 181 117 132 195 252 136 134 200 60 159 116 124 166 185 120 134 198 256 139 139 204 61 162 118 127 169 190 123 138 202 263 142 143 208 62 164 121 131 172 194 125 143 205 269 145 145 212 63 167 124 135 175 198 128 146 209 274 148 147 215 64 171 126 138 172 113 145 184 206 136 158 219 288 157 157 226 66 185 133 150 187 208 138 163 223 295 166 170 236 70 183 138 150 174 188 249 246 300 174 180 245 73 203 148 163 201 223 153	55	141	103	108	150	167	107	119	179	232	125	117	186
57148108113156174112127187241130125193 58 152111117160179115129190246133130197 59 155113120163181117132195252136134200 60 159116124166185120134198256139139204 61 162118127169190123138202263142143208 62 164121131172194125143205269145145212 63 167124135175198128146209274148147215 64 171126138178201130151212279150150219 65 174129141181203133154216285154153222 66 185135153189211141165226297160162229 68 135135153189211141165226297166170236 71 196143160199219150175236300174180245 73 203146	56	145	106	112	153	172	110	123	183	237	128	121	189
38 192 1111 1117 110 113 120 163 181 117 132 195 222 136 133 130 200 60 159 116 124 166 185 120 134 195 252 136 134 200 61 162 118 127 169 190 123 138 202 263 142 143 208 62 164 121 131 172 194 125 143 205 269 145 145 212 63 167 124 135 175 198 128 146 209 274 148 147 215 64 171 126 138 178 201 130 151 212 279 150 150 219 65 174 129 141 181 203 133 154 216 285 154 153 229 66 177 131 145 184 <td>57</td> <td>148</td> <td>108</td> <td>113</td> <td>156</td> <td>174</td> <td>112</td> <td>127</td> <td>187</td> <td>241</td> <td>130</td> <td>125</td> <td>193</td>	57	148	108	113	156	174	112	127	187	241	130	125	193
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 59	152	111	120	163	181	115	129	190	240 252	136	130	200
61 162 118 127 169 190 123 138 202 263 142 143 208 62 164 121 131 172 194 125 143 205 269 145 145 212 63 167 124 135 175 198 128 146 209 274 148 147 215 64 171 126 138 178 201 130 151 212 279 150 150 219 65 174 129 141 181 203 133 154 216 285 154 153 222 66 177 131 145 184 206 136 158 219 288 157 157 226 67 181 133 150 187 208 138 163 223 297 162 166 232 68 185 135 153 193 214 144 168 229 299 166 174 239 71 196 143 160 199 219 150 175 236 300 174 180 245 73 203 148 166 204 226 156 183 243 300 174 180 249 74 205 150 169 207 2213 162 190 249 30	60	159	116	124	166	185	120	134	198	256	139	139	200
62 164 121 131 172 194 125 143 205 269 145 145 212 63 167 124 135 175 198 128 146 209 274 148 147 215 64 171 126 138 178 201 130 151 212 279 150 150 219 65 174 129 141 181 203 133 154 216 285 154 153 222 66 177 131 145 184 206 136 158 219 288 157 157 226 67 181 133 150 187 208 138 163 222 299 166 170 236 70 193 140 157 196 217 147 172 233 300 174 239 71 196 143 160 199 219 150 175 236 300 174 180 245 73 203 148 166 201 223 153 179 240 300 174 180 245 74 205 150 169 207 229 158 185 246 300 183 190 255 75 209 152 175 213 234 170 194 258 300 183	61	162	118	127	169	190	123	138	202	263	142	143	208
6316712413517519812814620927414814721564171126138178201130151212279150150219651741291411812031331542162851541532226617713114518420613615821928815715722667181133150187208138163223295160162229681851351531892111411652262971621662326918913815519321414416822929916617023670193140157196217147172233300169174239711961431601992191501752363001741802457320314816620422615618324330017718324974205150169207229158185246300180187252752091521722102331621902493001831902557621316217521323	62	164	121	131	172	194	125	143	205	269	145	145	212
64 171 126 138 178 201 130 151 212 279 150 150 219 65 174 129 141 181 203 133 154 216 285 154 153 222 66 177 131 145 184 206 136 158 219 288 157 157 226 67 181 133 150 187 208 138 163 223 295 160 162 229 68 185 133 153 189 211 141 165 226 297 162 166 232 69 189 138 155 193 214 144 168 229 299 166 170 236 70 193 140 157 196 217 147 172 233 300 169 174 239 71 196 143 160 199 213 153 179 240 300 174 180 245 73 203 148 166 204 226 156 183 243 300 177 183 249 74 205 150 169 207 229 158 165 183 246 300 180 187 252 76 213 162 175 213 234 170 194 256	63	167	124	135	175	198	128	146	209	274	148	147	215
66 177 131 145 184 206 136 158 210 283 154 153 222 67 181 133 150 187 208 138 163 223 295 160 162 229 68 185 135 153 189 211 141 165 226 297 162 166 232 69 189 138 155 193 214 144 168 229 299 166 170 236 70 193 140 157 196 217 147 172 233 300 172 176 242 72 200 145 163 201 223 153 179 240 300 174 180 245 73 203 148 166 204 226 156 183 243 300 177 183 249 74 205 150 169 207 229 158 185 246 300 180 187 252 75 209 152 172 210 233 162 190 249 300 183 190 255 76 213 162 175 213 234 170 194 253 300 194 194 258 77 214 158 217 166 190 224 248 175 207	64	171	126	138	178	201	130	151	212	279	150	150	219
67181133150187208138163223295160162229 68 185135153189211141165226297162166232 69 189138155193214144168229299166170236 70 193140157196217147172233300169174239 71 196143160199219150175236300172176242 72 200145163201223153179240300174180245 73 203148166204226156183243300177183249 74 205150169207229158185246300180187252 75 209152172210233162190249300183190255 76 213162175213234170194253300193201264 78 217161183218241170201259300193201264 79 217164187221245173205262300195204268 80 217166	66 66	174	131	141	184	203	135	154	210 219	288 288	154	155	226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	181	133	150	187	208	138	163	223	295	160	162	229
69189138155193214144168229299166170236701931401571962171471722333001691742397119614316019921915017523630017217624272200145163201223153179240300174180245732031481662042261561832433001771832497420515016920722915818524630018018725275209152172210233162190249300183190255762131621752132341701942533001941942587721415817921623816719625630018919826278217161183218241170201259300193201264792171641872212451732052623001992072718121716819322725017821026830020221227482217170195229254	68	185	135	153	189	211	141	165	226	297	162	166	232
70 193 140 157 196 217 147 172 233 300 169 174 239 71 196 143 160 199 219 150 175 236 300 172 176 242 72 200 145 163 201 223 153 179 240 300 174 180 245 73 203 148 166 204 226 156 183 243 300 177 183 249 74 205 150 169 207 229 158 185 246 300 180 187 252 75 209 152 172 210 233 162 190 249 300 183 190 255 76 213 162 175 213 234 170 194 253 300 194 194 258 77 214 158 179 216 238 167 196 256 300 193 201 264 79 217 164 187 221 245 173 205 262 300 195 204 268 80 217 166 190 224 248 175 207 265 300 199 207 271 81 217 168 193 227 250 178 210 268 300	69	189	138	155	193	214	144	168	229	299	166	170	236
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	193	140	157	196	217	147	172	233	300	169	174	239
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	196	143	160	199	219	150	175	236	200	172	176	242
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	73	200	145	166	201	226	155	183	240	300	174	180	245
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	74	205	150	169	207	229	158	185	246	300	180	187	252
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75	209	152	172	210	233	162	190	249	300	183	190	255
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76	213	162	175	213	234	170	194	253	300	194	194	258
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	214	158	179	216	238	167	196	256	300	189	198	262
1010410722124011320920230019920426880217166190224248175207265300199207271812171681932272501782102683002022122748221717019522925418121527130020421427783217173198232258183218275300207216280842171752032342611862222773002102212838521717720623726518822528030021322428686217179209239266191228283300215226288872171822122412701932332863002182302928821718421524427319623628830022223429489217187220246277198238291300224237297	78 70	$217 \\ 217$	161 164	183 187	218	241 245	170 179	201 205	259	300 300	193 105	201	264
81 217 168 193 227 250 178 210 268 300 199 207 271 82 217 170 195 229 254 181 215 271 300 202 212 274 83 217 173 198 232 258 183 218 275 300 207 216 280 84 217 175 203 234 261 186 222 277 300 210 221 283 85 217 177 206 237 265 188 225 280 300 213 224 286 86 217 179 209 239 266 191 228 283 300 213 224 286 86 217 179 209 239 266 191 228 283 300 215 226 288 87 217 182 212 241 270 193 233 286	19 80	217 217	104 166	190	441 224	240 248	175	200 207	202 265	300	199 199	204 207	200 271
82 217 170 195 229 254 181 215 271 300 204 214 277 83 217 173 198 232 258 183 218 275 300 204 214 277 84 217 175 203 234 261 186 222 277 300 210 221 283 85 217 177 206 237 265 188 225 280 300 213 224 286 86 217 179 209 239 266 191 228 283 300 215 226 288 86 217 179 209 239 266 191 228 283 300 215 226 288 87 217 182 212 241 270 193 233 286 300 218 230 292 88 217 184 215 244 273 196 236 288	81	217	168	193	227	250	178	210	268	300	202	212	274
83217173198232258183218275300207216280842171752032342611862222773002102212838521717720623726518822528030021322428686217179209239266191228283300215226289872171822122412701932332863002182302948821718421524427319623628830022223429489217187220246277198238291300224237297	82	217	170	195	229	254	181	215	271	300	204	214	277
84 217 175 203 234 261 186 222 277 300 210 221 283 85 217 177 206 237 265 188 225 280 300 213 224 286 86 217 179 209 239 266 191 228 283 300 215 226 289 87 217 182 212 241 270 193 233 286 300 218 230 292 88 217 184 215 244 273 196 236 288 300 222 234 294 89 217 187 220 246 277 198 238 291 300 224 237 297	83	217	173	198	232	258	183	218	275	300	207	216	280
85 217 177 206 237 265 188 225 280 300 213 224 286 86 217 179 209 239 266 191 228 283 300 215 226 288 87 217 182 212 241 270 193 233 286 300 218 230 292 88 217 184 215 244 273 196 236 288 300 222 234 294 89 217 187 220 246 277 198 238 291 300 224 237 297	84	217	175	203	234	261	186	222	277	300	210	221	283
86 217 179 209 239 266 191 228 283 300 215 226 288 87 217 182 212 241 270 193 233 286 300 218 230 292 88 217 184 215 244 273 196 236 288 300 222 234 294 89 217 187 220 246 277 198 238 291 300 224 237 297	85	217	177	206	237	265	188	225	280	300	213	224	286
87 217 182 212 241 270 195 233 280 300 218 230 292 88 217 184 215 244 273 196 236 288 300 222 234 294 89 217 187 220 246 277 198 238 291 300 224 237 297	86 87	217	179	209	239 241	266 270	191 102	228	283	300	215	226	288
89 217 187 220 246 277 198 238 291 300 224 237 297	88	217	184	212 215	244 244	273 273	196 196	⊿00 236	288 288	300	∠10 222	⊿30 234	292 294
	89	217	187	220	246	277	198	238	291	300	224	237	297

Tabelle 23: Geo2 - Simulations
ergebnisse

Tabelle 23:	Geo 1	2 -	Simulationser	gebnisse
-------------	-------	-----	---------------	----------

		Cash	G 0 000 G 0 100 G							Cash	<u> </u>		
t /s	Empirie	Asori	PedGo	Viewalk	Empirie	Aseri	PedGo	Viewalk	Empirie	A sori	- 2,40 III Ped Go	Viewalk	
6/8	/P	/P	/P	/P	/P	/P	/P	/P	/P	/P	/P	/P	
	/-	/-	/-	/-	/-	/-	/*	/*	/-	/-	/-	/-	
90	217	189	224	249	280	201	243	294	300	227	240	300	
91	217	192	228	251	282	203	248	297	300	230	243	303	
92	217	195	232	253	286	206	249	300	300	233	246	306	
93	217	197	236	256	287	209	254	302	300	237	250	308	
94	217	199	238	258	289	212	258	305	300	240	253	311	
95	217	201	241	261	293	215	260	308	300	243	257	314	
96	217	203	245	263	295	218	265	310	300	245	261	317	
97	217	206	248	266	297	220	267	313	300	248	263	319	
98	217	208	251	269	298	223	271	315	300	251	267	321	
99	217	210	255	271	298	226	274	318	300	254	271	324	
100	217	213	260	273	298	229	278	321	300	257	274	326	
101	217	215	263	275	298	232	282	323	300	259	276	329	
102	217	218	265	277	298	234	282	325	300	262	276	331	
103	217	219	269	280	298	238	287	328	300	266	281	333	
104	217	222	273	282	298	240	290	330	300	268	283	336	
105	217	224	276	285	298	243	293	332	300	271	288	338	
106	217	227	278	287	298	246	297	335	300	274	291	340	
107	217	229	282	289	298	249	301	337	300	277	294	341	
108	217	232	285	291	298	251	304	339	300	280	296	343	
109	217	234	288	293	298	253	307	341	300	282	301	345	
110	217	237	292	296	298	256	312	343	300	286	304	346	
111	217	239	294	297	298	258	314	345	300	289	307	348	
112	217	242	297	300	298	261	317	346	300	291	310	348	
113	217	244	302	302	298	263	321	348	300	294	314	349	
114	217	248	305	304	298	266	326	349	300	297	316	350	
115	217	251	309	306	298	269	330	349	300	300	319	350	
116	217	253	313	308	298	272	333	350	300	303	323	350	
117	217	255	315	310	298	275	338	350	300	306	327	350	
118	217	258	319	312	298	278	341	350	300	310	329	350	
119	217	261	321	314	298	280	345	350	300	312	333	350	
120	217	263	326	316	298	283	349	350	300	315	337	350	
121	217	265	329	318	298	285	350	350	300	317	342	350	
122	217	267	334	320	298	289	350	350	300	321	346	350	
123	217	269	338	322	298	291	350	350	300	324	348	350	
124	217	271	340	324	298	294	350	350	300	327	350	350	
125	217	274	344	325	298	296	350	350	300	330	350	350	
126	217	277	348	327	298	299	350	350	300	333	350	350	
127	217	279	350	329	298	302	350	350	300	335	350	350	
128	217	281	350	331	298	304	350	350	300	338	350	350	
129	217	283	350	333	298	306	350	350	300	341	350	350	
130	217	286	350	334	298	309	350	350	300	343	350	350	
131	217	288	350	336	298	312	350	350	300	345	350	350	
132	217	291	350	337	298	315	350	350	300	347	350	350	
133	217	293	350	339	298	317	350	350	300	349	350	350	
134	217	295	350	341	298	320	350	350	300	349	350	350	
135	217	297	350	343	298	323	350	350	300	350	350	350	
136	217	300	350	344	298	326	350	350	300	350	350	350	
137	217	303	350	345	298	329	350	350	300	350	350	350	
138	217	305	350	346	298	332	350	350	300	350	350	350	
139	217	307	350	348	298	334	350	350	300	350	350	350	
140	217	310	350	348	298	337	350	350	300	350	350	350	
141	217	313	350	349	298	340	350	350	300	350	350	350	
142	217	316	350	349	298	342	350	350	300	350	350	350	
143	217	318	350	349	298	344	350	350	300	350	350	350	
144	217	321	350	349	298	346	350	350	300	350	350	350	
145	217	323	350	349	298	347	350	350	300	350	350	350	
146	217	326	350	350	298	348	350	350	300	350	350	350	
147	217	328	350	350	298	349	350	350	300	350	350	350	
148	217	331	350	350	298	349	350	350	300	350	350	350	
149	217	333	350	350	298	350	350	350	300	350	350	350	
150	217	335	350	350	298	350	350	350	300	350	350	350	
151	217	337	350	350	298	350	350	350	300	350	350	350	
152	217	339	350	350	298	350	350	350	300	350	350	350	
153	217	341	350	350	298	350	350	350	300	350	350	350	
154	217	342	350	350	298	350	350	350	300	350	350	350	
155	217	344	350	350	298	350	350	350	300	350	350	350	
156	217	346	350	350	298	350	350	350	300	350	350	350	
157	217	347	350	350	298	350	350	350	300	350	350	350	
158	217	348	350	350	298	350	350	350	300	350	350	350	
159	217	348	350	350	298	350	350	350	300	350	350	350	
160	217	349	350	350	298	350	350	350	300	350	350	350	
161	217	349	350	350	298	350	350	350	300	350	350	350	
162	217	350	350	350	298	350	350	350	300	350	350	350	
163	217	350	350	350	298	350	350	350	300	350	350	350	
164	217	350	350	350	298	350	350	350	300	350	350	350	
165	217	350	350	350	298	350	350	350	300	350	350	350	
166	217	350	350	350	298	350	350	350	300	350	350	350	
167	217	350	350	350	298	350	350	350	300	350	350	350	
168	217	350	350	350	298	350	350	350	300	350	350	350	

Geo 2 - 0,80m Geo 2 - 1,20m Geo 2 - 2,40m t /s Empirie Aseri PedGo Viswalk Empirie Aseri PedGo (D) (D) (D) (D) (D) (D) (D)				
t/s Empirie Aseri PedGo Viswalk Empirie Aseri PedGo Viswalk Empirie Aseri PedGo	Geo 2 - 2,40m			
/P) Viswalk /P			
	350			
<u>170 217 350 350 350 298 350 350 350 350 350 350 350</u>	350			

Tabelle 23: Geo 2 - Simulationsergebnisse

A.4 Simulations ergebnisse Geo3~& Geo4

		Geo 3	Geo 3		Geo 4		
t/s	Aseri	\mathbf{PedGo}	Viswalk	Aseri	\mathbf{PedGo}	Viswalk	
	/P	/P	/P	/P	/P	/P	
	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
о С	0	0	0	0	0	0	
7	0	0	0	0	0	0	
1 9	0	0	1	0	0	0	
0	0	0	1	0	0	0	
5 10	0	0	4	0	0	1	
11	2	0	6	0	0	2	
12	6	0	8	0	Ő	3	
13	11	0	10	0	0	5	
14	17	0	14	1	0	6	
15	23	0	17	1	0	9	
16	28	0	21	2	0	11	
17	32	0	25	3	0	14	
18	35	0	28	5	0	16	
19	39	1	33	7	1	19	
20	42	2	38	9	2	22	
21	45	2	42	11	2	25	
22	48	2	47	13	2	28	
23	52	3	51	15	3	32	
24	56	6	56	18	6	34	
25	59	6	62	21	6	37	
26	63	6	67	23	6	41	
27	67	9	72	26	9	44	
28	70	10	78	29	10	47	
29	74	12	84	31	12	51	
30	77	14	89	34	14	54	
31	81	16	95	36	16	58	
32	85	19	101	39	19	62	
33	87	20	106	42	20	65	
34	91	23	112	44	23	69	
35	95	26	118	46	26	73	
30	99	21	123	49	27	10	
31 29	102	30	129	02 55	30	80	
20	100	27	134	50	27	89	
40	111	38	146	60	38	91	
41	115	40	152	63	40	95	
42	118	42	157	66	42	99	
43	122	46	163	69	46	103	
44	126	49	169	72	49	106	
45	128	53	174	74	53	110	
46	132	56	180	77	56	114	
47	135	60	185	80	60	118	
48	137	65	190	82	65	121	
49	141	67	195	85	67	125	
50	144	70	200	88	70	128	
51	147	73	204	91	73	132	
52	151	77	210	94	77	136	
53	154	79	214	97	79	140	
54	158	82	219	100	82	143	
55	162	86	224	102	86	147	
56	165	90	229	105	90	151	
57	169	92	233	108	92	154	
58	173	95	238	111	95	157	
59	176	98	242	114	98	161	
60	179	103	246	117	103	164	
61	183	107	250	119	107	168	
62	186	110	255	122	110	171	
63	190	113	259	125	113	174	

Tabelle 24: Geo3~&~4 - Simulations
ergebnisse

		Geo 3			Geo 4	
t/s	Aseri	PedGo	Viswalk	Aseri	PedGo	Viswalk
0 / 5	/P	/P	/P	/P	/P	/P
	,	,	,	·	,	'
64	194	116	263	128	116	178
65	197	118	267	130	118	181
67	201	121	271	133	121	184
68	204	124	279	130	124	191
69	211	120	282	142	129	194
70	214	132	286	146	132	197
71	218	133	290	149	133	200
72	220	137	293	152	137	204
73	224	139	297	154	139	206
74	227	139	300	157	139	210
75	230	144	303	161	144	213
76	243	148	306	171	148	216
77	238	150	310	166	150	219
78 70	241	154	313	109	154	222
19	244	158	210	174	158	224
81	248	164	323	174	164	230
82	254	168	325	180	168	233
83	258	171	328	183	171	236
84	261	176	331	185	176	238
85	265	178	334	187	178	241
86	269	182	336	191	182	244
87	272	187	339	194	187	246
88	276	191	341	197	191	249
89	279	196	343	200	196	252
90	283	199	345	202	199	255
91	286	201	347	205	201	257
92	289	203	348	208	203	260
93 94	294 296	200	349	210	200	203 265
94 95	290	209	345	215	203	268
96	303	212	350	210	212	270
97	307	220	350	223	220	273
98	311	222	350	225	222	275
99	314	226	350	228	226	278
100	317	228	350	231	228	280
101	321	232	350	234	232	282
102	324	234	350	236	234	285
103	328	238	350	239	238	288
104	332	241	350	242	241	290
105	335	242	350	245	242	292
105	338 241	240	33U 250	247	240	294
107	341	240	350	253	248 253	291
100	348	253 257	350	255	253 257	200 301
110	349	260	350	259	260	304
111	350	263	350	262	263	305
112	350	266	350	265	266	307
113	350	267	350	268	267	310
114	350	270	350	271	270	312
115	350	275	350	274	275	314
116	350	278	350	277	278	316
117	350	280	350	280	280	318
110	350	200 287	350	200 285	200 287	320 322
120	350	289	350	289	289	324
121	350	291	350	291	291	326
122	350	294	350	294	294	329
123	350	296	350	297	296	330
124	350	299	350	300	299	332
125	350	302	350	302	302	334
126	350	307	350	305	307	336
127	350	310	350	307	310	337
128	350	312	350	310	312	339
129	350	315	350	312	315	340
130	33U 250	318 200	33U 250	313 215	318 200	342 244
132	350	325	350	318	325	345
133	350	328	350	320	328	346
134	350	333	350	323	333	347
135	350	336	350	325	336	348
136	350	336	350	327	336	349
137	350	341	350	329	341	350
138	350	345	350	332	345	350
139	350	347	350	334	347	350
140	350	350	350	335	350	350
141	350	350	350	338	350	350
142	39U	390	39U	228	390	30U

Tabelle 24: Geo 3 & 4 - Simulationsergebnisse

					0	
t/s	Aseri /P	Geo 3 PedGo /P	Viswalk /P	Aseri /P	Geo 4 PedGo /P	Viswalk /P
143	350	350	350	341	350	350
144	350	350	350	343	350	350
145	350	350	350	345	350	350
146	350	350	350	345	350	350
147	350	350	350	346	350	350
148	350	350	350	347	350	350
149	350	350	350	348	350	350
150	350	350	350	349	350	350
151	350	350	350	349	350	350
152	350	350	350	350	350	350
153	350	350	350	350	350	350
154	350	350	350	350	350	350
155	350	350	350	350	350	350
156	350	350	350	350	350	350
157	350	350	350	350	350	350
158	350	350	350	350	350	350
159	350	350	350	350	350	350
160	350	350	350	350	350	350

Tabelle 24: Geo 3 & 4 - Simulationsergebnisse

B Streuung der Simulationsergebnisse

B.1 Geo 1a

Abb. B.38 - Abb. B.40 stellen die minimalen und maximalen Passagezeiten der Zähllinie in den Simulationsprogrammen Aseri, PedGo und Viswalk für die Geo 1a mit der Bemaßung $1,20 \text{ m} \times 4,00 \text{ m}, 1,60 \text{ m} \times 4,00 \text{ m}$ und $2,00 \text{ m} \times 4,00 \text{ m}$ dar.

Die Abweichungen zwischen längstem und kürzestem Verlauf bewegen sich im Bereich von 5 - 8s und üben einen verhältnismäßig geringen Einfluss auf die Bewertung der Szenarien aus. Für PedGo zeigen sich insbesondere bei der Anordnung $1,20 \text{ m} \times 4,00 \text{ m}$ und $1,60 \text{ m} \times 4,00 \text{ m}$ sehr geringe Differenzen. Mit der Auswertung des empfohlenen 95 %-Seeds wurde der konservativen Annahme Rechnung getragen. Mit steigender Breite des Querschnitts sinkt die Höhe der Abweichungen.

Abbildung B.38: Geo 1a - $1,20 \text{ m} \times 4,00 \text{ m}$ - Streuung der Ergebnisse

Abbildung B.39: Geo 1a - $1,60\,m\times4,00\,m$ - Streuung der Ergebnisse

Abbildung B.40: Geo 1a - $2{,}00\,m\times 4{,}00\,m$ - Streuung der Ergebnisse

B.2 Geo 1b

Die Abb. B.41 - Abb. B.43 stellen die minimalen und maximalen Passagezeiten der Zähllinie in den Simulationsprogrammen Aseri, PedGo und Viswalk für die Geo 1b mit der Bemaßung $1,20 \text{ m} \times 0,06 \text{ m}, 1,20 \text{ m} \times 2,00 \text{ m}$ und $1,20 \text{ m} \times 4,00 \text{ m}$ dar.

Festzustellen ist, dass die Abweichungen zwischen längstem und kürzestem Verlauf sich im Bereich von 5 - 6s bewegen und somit ebenfalls einen verhältnismäßig geringen Einfluss auf die Bewertung der Szenarien ausüben.

Die Länge des Bottlenecks hat keinen erkennbaren statistischen Effekt auf die Passagezeit der Zähllinien.

Abbildung B.41: Geo 1b - $1,20 \text{ m} \times 0,06 \text{ m}$ - Streuung der Ergebnisse

Abbildung B.42: Geo 1b - $1,20\,m\times2,00\,m$ - Streuung der Ergebnisse

Abbildung B.43: Geo 1b - $1,20\,m\times4,00\,m$ - Streuung der Ergebnisse

$B.3 \ Geo \ 2$

Abb. B.44 - Abb. B.46 stellen die minimalen und die maximalen Passagezeiten der Zähllinie in den Simulationsprogrammen Aseri, PedGo und Viswalk für die Geo 2 mit den Zustrombreiten 0,80m, 1,20m und 2,40m dar.

Obwohl die zeitlichen Differenzen zwischen minimaler und maximaler Passagezeit leicht erhöht sind $(\leq 13 s)$, bleibt die Größenordnung der Schwankungen über alle Variationen der Anordnung $\leq 7\%$ und wird daher nicht näher betrachtet. Einen Einfluss der Variation der Zustrombreite hat keinen Effekt auf die statistische Streuung der Ergebnisse.

Abbildung B.44: Geo2- $0,80\,m$ - Streuung der Ergebnisse

Abbildung B.45: Geo2 - $1,\!20\,m$ - Streuung der Ergebnisse

Abbildung B.46: Geo2- $2,40\,m$ - Streuung der Ergebnisse

B.4 Geo 3

Die Abb. B.47 stellt die minimalen und die maximalen Passagezeiten der Zähllinie der Simulationsprogramme Aseri, PedGo und Viswalk für die Geo 3 dar.

Die größte Abweichung zwischen minimaler und maximaler Passagezeit ist $\leq 10\%$, weshalb eine detailliertere Untersuchung nicht vorgenommen wird. Der Vergleich der Streuung zwischen der T-Situation (Geo 2) und dem Y-Zusammenstrom (Geo 3) ergibt keine Veränderung in der Ergebnisstreuung. Lediglich bei PedGo streuen die Ergebnisse in der Y-Anordnung mehr, was auf die in Kap. 6.3 beschriebenen Effekte zurückzuführen ist.

Abbildung B.47: Geo 3 - Streuung der Ergebnisse

 $B.5 \ {\rm Geo} \ 4$

Die Abb. B.48 stellt die minimalen und die maximalen Passagezeiten der Zähllinie in den Simulationsprogrammen Aseri, PedGo und Viswalk für die Geo 4 dar.

In der Anordnung der Geo 4 wurde mit den genutzten Rechenmodellen mit einer sehr geringen statistischen Streuung der Ergebnisse ($\leq 5\%$) berechnet. Auf eine detailliertere Auswertung wird daher verzichtet.

Abbildung B.48: Geo 4 - Streuung der Ergebnisse

C Übersicht der Simulationen

Nr.	Name	Datum	Beschreibung
1	aseri-120x400 (homogen - Entfluchtung)	13.06.2012	Simulation Geo1a - 120x400 - Bewegungsmodus Entfluchtung
2 3	aseri-120x400 (homogen -Gefahr) aseri-120x400(homogen - Gefahr)-	13.06.2012 13.06.2012	Simulation Geo1a - 120x400 - Bewegungsmodus Gefahr Einfluss des Vorraums vor Aussenbereich
4	2raum aseri 160x400 (homogen, Gefahr)	13 06 2012	Simulation Geola, 160x400, Rewagungsmodus Gefahr
5	aseri-120x400 (nonlogen -Gelani)	13.06.2012 13.06.2012	Simulation Geola 120x400 - Dewegungsmodus Gelam
6	aseri-160x400	13.06.2012	Simulation Geola 140x400
7	aseri-200x400	13.06.2012	Simulation Geola 200x400 Abströmfläche und Bottleneck als Polygon
8	tung)(Engstelle mit Abströmfläche)	20.00.2012	Abstromnache und Bottleneck als Folygon
9	aseri-120x006(homogen - Gefahr)	13.06.2012	Simulation Geo1b - 120x006 - Bewegungsmodus Gefahr
10	aseri-120x400-bewgung-u-raum-	13.06.2012	Einfluss des Vorraums vor Aussenbereich - Bewegungsmodus Ent-
11	aseri-120x400-bewgung-u-raum-	13.06.2012	Einfluss des Vorraums vor Aussenbereich - Bewegungsmodus Ent-
	entfluchtung-2raum		fluchtung
12	aseri-120x400-bewgung-u-raum-	13.06.2012	Einfluss des Vorraums vor Aussenbereich - Bewegungsmodus Ge-
13	aseri-120x400-bewgung-u-raum-	13.06.2012	Einfluss des Vorraums vor Aussenbereich - Bewegungsmodus Ge-
	entfluchtung-2raum		fahr
14	aseri-160x400(homogen - Gefahr)	13.06.2012	Simulation Geola - 160x400 - Bewegungsmodus Gefahr
15	tung)(Engstelle mit Abströmfläche verbunden)	20.00.2012	Abstrominatile and Bottleneck als Folygon
16	aseri-120x200(homogen - Gefahr)	13.06.2012	Simulation Geo1a - 120x400 - Bewegungsmodus Gefahr
17	aseri-120x400(homogen - Entfluch-	20.06.2012	Abströmfläche und Bottleneck als Polygon
	tung)(Engstelle mit Abströmfläche verbunden)		
18	aseri-geo1b-aseri-120x006	13.06.2012	Simulation Geo1a 120x006
19	aseri-geo1b-aseri-120x200	13.06.2012	Simulation Geo1a 120x200
20	aseri-geo1b-aseri-120x400	13.06.2012	Simulation Geola 120x400 Simulation Geola 080
21	aseri-geo2-120	23.06.2012	Simulation Geo2-080
23	aseri-geo2-240	23.06.2012	Simulation Geo2-240
24	aseri-geo3	20.06.2012	Simulation Geo2-240
25 26	aseri-geo4	20.06.2012	Simulation Geola 120x400
20	pedgo-geo1a-120x400 pedgo-geo1a-160x400	04.06.2012	Simulation Geola-160x400
28	pedgo-geo1a-200x400	04.06.2012	Simulation Geo1a-200x400
29	pedgo-geo1a-220x400	04.06.2012	Simulation Geo1a-220x400 - Überprüfung Einfluss Raumdiskreti- sierung
30 21	pedgo-geo1b-120x006	04.06.2012	Simulation Geo1b-120x006
32	pedgo-geo1b-120x200	04.06.2012 04.06.2012	Simulation Geo1b-120x200
33	pedgo-geo2-080	20.06.2012	Simulation Geo2-080
34	pedgo-geo2-120	04.06.2012	Simulation Geo2-120
35	pedgo-geo2-240	04.06.2012	Simulation Geo2-240
30 37	pedgo-geo3 pedgo-geo4	18.06.2012	Simulation Geo4
38	pedgo-geo1a-120x400-Min	21.06.2012	Simulation Geola-120x400-Seed:Minimum
39	pedgo-geo1a-160x400-Min	21.06.2012	Simulation Geo1a-160x400-Seed:Minimum
40	pedgo-geo1a-200x400-Min	21.06.2012	Simulation Geola-200x400-Seed:Minimum
41 42	pedgo-geo1b-120x000-Min	21.06.2012 21.06.2012	Simulation Geolb-120x000-Seed:Minimum
43	pedgo-geo1b-120x400-Min	21.06.2012	Simulation Geo1b-120x400-Seed:Minimum
44	pedgo-geo2-080-Min	21.06.2012	Simulation Geo2-080-Seed:Minimum
$45 \\ 46$	pedgo-geo2-120-Min pedgo-geo2-240 Min	21.06.2012	Simulation Geo2-120-Seed:Minimum Simulation Geo2-240 Seed:Minimum
40	pedgo-geo3-Min	21.06.2012 21.06.2012	Simulation Geo3-Seed:Minimum
48	pedgo-geo4-Min	21.06.2012	Simulation Geo3-Seed:Minimum
49	pedgo-geo1a-120x400-Max	21.06.2012	Simulation Geo1a-120x400-Seed:Maximum
50 51	pedgo-geo1a-160x400-Max	21.06.2012	Simulation Geola-160x400-Seed:Maximum
52	pedgo-geo1a-220x400-Max	21.06.2012	Simulation Geola-200x400-Seed:Maximum
53	pedgo-geo1b-120x006-Max	21.06.2012	Simulation Geo1b-120x006-Seed:Maximum
54	pedgo-geo1b-120x200-Max	21.06.2012	Simulation Geolb-120x200-Seed:Maximum
55 56	peago-geo1b-120x400-Max pedgo-geo2-080-Max	21.06.2012 21.06.2012	Simulation Geolb-120x400-Seed:Maximum Simulation Geol-080-Seed:Maximum
57	pedgo-geo2-120-Max	21.06.2012	Simulation Geo2-120-Seed:Maximum
58	pedgo-geo2-240-Max	21.06.2012	Simulation Geo2-240-Seed:Maximum
59	pedgo-geo3-Max	21.06.2012	Simulation Geo3-Seed:Maximum
60 61	pedgo-geo4-Max viswalk-geo1a-120×400 default	21.06.2012	Simulation Geo4-Seed:Maximum keine Geschwindigkeitsannassung, default Sotting
62	viswalk-geo1a-160x400-default	29.05.2012 29.05.2012	keine Geschwindigkeitsanpassung, default-Setting
63	viswalk-geo1a-200x400-default	29.05.2012	keine Geschwindigkeitsanpassung, default-Setting
64	viswalk-geo1a-220x400-default	29.05.2012	keine Geschwindigkeitsanpassung, default-Setting
65	viswaik-geo1b-120x006-default	29.05.2012	keine Geschwindigkeitsanpassung, default-Setting

Tabelle 25: Simulationsübersicht

Tabelle 25: Simulationsübersicht

	16	100110 ± 0.01	
	Name	Datum	Beschreibung
Nr.			
66	viswalk-geo1b-120x200-default	29.05.2012	keine Geschwindigkeitsanpassung, default-Setting
67	viswalk-geolb-120x400-default	29.05.2012	keine Geschwindigkeitsanpassung, default-Setting
60 60	aseri-geola 160x400 inhomogen	07.06.2012	inhomogene Population
70	aseri geola 200x400 inhomogen	07.06.2012	inhomogene Population
71	aseri-geolb-120x006-inhomogen	07.06.2012	inhomogene Population
72	aseri-geolb-120x200-inhomogen	07.06.2012	inhomogene Population
73	aseri-geo1b-120x400-inhomogen	07.06.2012	inhomogene Population
74	aseri-geo2-080-inhomogen	23.05.2012	inhomogene Population
75	aseri-geo2-120-inhomogen	23.05.2012	inhomogene Population
76	aseri-geo2-240-inhomogen	23.05.2012	inhomogene Population
77	aseri-geo1a-120x400-Messlinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
78	aseri-geo1a-160x400-Messlinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
79	aseri-geo1a-200x400-Messlinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
80	aseri-geo1b-120x006-Messlinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
81	aseri-geolb-120x200-Messlinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
82	aseri-geol b-120 x400-Messiinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
00 94	aseri goo2 120 Messlinie Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
85	aseri-geo2-240-Messlinie-Ausgang	10.05.2012	Differenz bei Messung am Simulationsrand
86	nedgo-geo4-120	15.06.2012	Variation der Abstrombreite Geo4
87	pedgo-geo4-120	15.06.2012 15.06.2012	Variation der Abstrombreite Geo4
88	pedgo-geo4-120	15.06.2012	Variation der Abstrombreite Geo4
89	pedgo-geo4-120	15.06.2012	Variation der Abstrombreite Geo4
90	pedgo-geo1a-120x400-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
91	pedgo-geo1a-160x400-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
92	pedgo-geo1a-200x400-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
93	pedgo-geo1a-220x400-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
94	pedgo-geo1b-120x006-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
95	pedgo-geo1b-120x200-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
96	pedgo-geo1b-120x400-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
97	pedgo-geo2-080-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
98	pedgo-geo2-120-Lage-Logpoints	04.06.2012	Variation Lage der Logpoints
100	pedgo-geo2-240-Lage-Logpoints	12.06.2012	Variation Lage der Logpoints Variation der Abstrombreite Cood
100	viswalk good 120	12.00.2012	Variation der Abstrombreite Geo4
101	viswalk-geo4-120	12.00.2012 12.06.2012	Variation der Abstrombreite Geo4
102	viswalk-geo4-120	12.00.2012	Variation der Abstrombreite Geo4
104	viswalk-geo1a-120x400-koerperbreite	01.06.2012	Variation der Körperbreite
105	viswalk-geo1b-120x006-Auslauf	21.05.2012	Einfluss bei Messung am Simulationsrand
106	viswalk-geo1b-120x200-Auslauf	21.05.2012	Einfluss bei Messung am Simulationsrand
107	viswalk-geo1b-120x400-Auslauf	21.05.2012	Einfluss bei Messung am Simulationsrand
108	viswalk-geo1a-120x400-Auslauf	01.06.2012	Einfluss bei Messung am Simulationsrand
109	viswalk-geo1a-160x400-Auslauf	01.06.2012	Einfluss bei Messung am Simulationsrand
110	viswalk-geo1a-200x400-Auslauf	01.06.2012	Einfluss bei Messung am Simulationsrand
111	viswalk-geo1a-220x400-Auslauf	01.06.2012	Einfluss bei Messung am Simulationsrand
112	viswalk-geo4-3m	11.06.2012	Einfluss von Treppenlänge und Steigungswinkel bei Merge
113	viswalk-geo4-4m	11.06.2012	Einfluss von Treppenlänge und Steigungswinkel bei Merge
114	viswalk-geo4-5m	11.06.2012	Einfluss von Treppenlänge und Steigungswinkel bei Merge
110	viswalk-geo4-6m	11.06.2012	Einfluss von Treppenlänge und Steigungswinkel bei Merge
117	viswalk-geo1a_120x400	29.05.2012	Simulation Geola-120x400
118	viswalk-geo1a-160x400	29.05.2012	Simulation Geola-160x400
119	viswalk-geo1a-200x400	29.05.2012 29.05.2012	Simulation Geola-200x400
120	viswalk-geo1a-220x400	29.05.2012	Simulation $Geo1a-220x400$
121	viswalk-geo1b-120x006	29.05.2012	Simulation Geo1b-120x006
122	viswalk-geo1b-120x200	01.06.2012	Simulation Geo1b-120x200
123	viswalk-geo1b-120x400	01.06.2012	Simulation Geo1b-120x400
124	viswalk-geo2-080	01.06.2012	Simulation Geo2-080
125	viswalk-geo2-120	01.06.2012	Simulation Geo2-120
126	viswalk-geo2-240	01.06.2012	Simulation Geo2-240
127	viswalk-geo3	12.06.2012	Simulation Geo3
128	viswalk-geo4	12.06.2012	Simulation Geo4
129	viswalk-geola-120x400-Min	12.06.2012	Simulation Geola-120x400-Uberprüfung Minimum
130	viswalk-geola-160x400-Min	12.06.2012	Simulation Geola-160x400-Uberprüfung Minimum
131	viswalk-geo1a-200x400-Min	12.06.2012	Simulation Geola-200x400-Oberprutung Minimum
132	viswalk-geotb 120x200 Min	12.00.2012	Simulation Geolb 120x006-0 Derprutung Minimum
133	viswalk-geoth_120x200-Will viswalk-geoth_120x200 Min	12.00.2012	Simulation Geoth-120x200-Oberprutuing Minimum
134	viswalk-geo2-080-Min	11.06 2012	Simulation Geo2-080-Überprüfung Minimum
136	viswalk-geo2-120-Min	11.06 2012	Simulation Geo2-120-Überprüfung Minimum
137	viswalk-geo2-240-Min	11.06.2012	Simulation Geo2-240-Übernrüfung Minimum
138	viswalk-geo3-Min	11.06.2012	Simulation Geo3-Überprüfung Minimum
139	viswalk-geo4-Min	11.06.2012	Simulation Geo4-Überprüfung Minimum
140	viswalk-geo1a-120x400-Max	11.06.2012	Simulation Geo1a-120x400-Überprüfung Maximum
141	viswalk-geo1a-160x400-Max	11.06.2012	Simulation Geo1a-160x400-Überprüfung Maximum
142	viswalk-geo1a-200x400-Max	11.06.2012	Simulation Geo1a-200x400-Überprüfung Maximum
143	viswalk-geo1a-220x400-Max	11.06.2012	Simulation Geo1a-220x400-Überprüfung Maximum-Extrema
144	viswalk-geo1b-120x006-Max	11.06.2012	Simulation Geo1b-120x006-Überprüfung Maximum
145	viswalk-geo1b-120x200-Max	11.06.2012	Simulation Geo1b-120x200-Überprüfung Maximum

Tabelle 25: Simulationsübersicht

	Name	Datum	Beschreibung		
Nr.					
146	viswalk-geo1b-120x400-Max	11.06.2012	Simulation Geo1b-120x400-Überprüfung Maximum		
147	viswalk-geo2-080-Max	11.06.2012	Simulation Geo2-080-Überprüfung Maximum		
148	viswalk-geo2-120-Max	11.06.2012	Simulation Geo2-120-Überprüfung Maximum		
149	viswalk-geo2-240-Max	11.06.2012	Simulation Geo2-240-Überprüfung Maximum		
150	viswalk-geo3-Max	11.06.2012	Simulation Geo3-Überprüfung Maximum		
151	viswalk-geo4-Max	11.06.2012	Simulation Geo4-Überprüfung Maximum		

D Weiterführende Screenshots

D.1 Geo 1a - Geschwindigkeitsanpassung Aseri

(a) $1,20 \text{ m} \times 4,00 \text{ m}$

(b) **1,60** m × **4,00** m

Abbildung D.49: Geo $1{\rm a}$ - effektive Gehgeschwindigkeit

D.2 Geo 2 - limitierender Parameter

Abbildung D.50: Geo 2 - Gegenüberstellung Viswalk und PedGo

E VBA-Funktionen

E.1 EucDist

Die Funktion EucDist berechnet den euklidischen Abstand zwischen Experiment und Rechenmodell nach Gl. 3.26.³⁰

```
Function EucDist (Experiment As Range, Modell As Range) As Double
    ExpZeile = Experiment.Row
    ExpSpalte = Experiment.Column
    ModZeile = Modell.Row
    ModSpalte = Modell.Column
    Zahler = 0
    Nenner = 0
    Do
        Modi = Cells(ModZeile, ModSpalte)
        Expi = Cells(ExpZeile, ExpSpalte)
        Zaehler = Zaehler + (Modi - Expi) ^ 2
        Nenner = Nenner + Expi ^ 2
        If IsEmpty(Cells(ModZeile + 1, ModSpalte)) = True Or IsEmpty(
           Cells(ExpZeile + 1, ExpSpalte)) = True Then
            Exit Do
        End If
        ExpZeile = ExpZeile + 1
        ModZeile = ModZeile + 1
    Loop
    EucDist = (Zaehler / Nenner) ^ (0.5)
End Function
```

³⁰ Bei der Erstellung der hier verwendeten Visual Basic Scripte zur Errechnung der euklidischen Distanz ϵ und des inneren euklidischen Produktes φ konnte ich dankenswerter Weise auf die umfassende Hilfe von Herrn Florian Berchtold zurückgreifen [59].
E.2 EucCos

Die Funktion EucDist berechnet den euklidischen Abstand zwischen Experiment und Rechenmodell nach Gl. 3.28.

```
Function EucCos(Experiment As Range, Modell As Range) As Double
    ExpZeile = Experiment.Row
   ExpSpalte = Experiment.Column
   ModZeile = Modell.Row
   ModSpalte = Modell.Column
   Zahler = 0
   ExpQua = 0
   ModQua = 0
   Do
       Modi = Cells(ModZeile, ModSpalte)
        Expi = Cells(ExpZeile, ExpSpalte)
        Zaehler = Zaehler + Expi * Modi
        ExpQua = ExpQua + Expi ^ 2
        ModQua = ModQua + Modi ^ 2
        If IsEmpty(Cells(ModZeile + 1, ModSpalte)) = True Or IsEmpty(
           Cells(ExpZeile + 1, ExpSpalte)) = True Then
            Exit Do
        End If
        ExpZeile = ExpZeile + 1
        ModZeile = ModZeile + 1
   Loop
   EucCos = Zaehler / (ExpQua * ModQua) ^ (0.5)
End Function
```

F Mathematische Interpretation des Simulationsfehlers

F.1 Graphische Darstellung des Simulationsfehlers

Abbildung F.51: Zusammenhang zwischen simuliertem und korrigiertem Kurvenverlauf

F.2 Detailbetrachtung der Geo 2 - 2,40 m

Zur tiefgründigeren Analyse der Geo 2 - 2,40 m wurde diese in vier Betrachtungsintervalle unterteilt. Die Begrenzungen der Bereiche ergaben sich aus markanten Merkmalen in den individuellen Kurvenläufen. So wird der Bereich A durch einen Wendepunkt der Viswalk-Kurve begrenzt. Für den Bereich B gilt als untere Begrenzung der Wendepunkt in der Viswalk-Kurve, die obere Grenze markiert den Schnittpunkt von PedGo und Aseri. Der nachfolgende Intervall C endet mit dem Schnittpunkt der Aseri- und Experimentalkurve. Der Bereich D erstreckt sich über alle Werte oberhalb des Schnittpunkts Aseri-Empirie.

Für alle Simulationsprogramme ist im Bereich A eine sehr hohe Übereinstimmung in Form des euklidischen Produktes φ zu erkennen. Die euklidische Distanz ist für alle Programme vergleichsweise gering - die Programme errechnen einen abweichenden Verlauf unmittelbar nach Simulationsbeginn (vergl. Abb. F.52).

Abbildung F.52: Geo2 - $2,\!40\,m$ - Detailbetrachtung im Abschnitt A

Abbildung F.53: Geo2 - $2,40\,m$ - Detailbetrachtung im Abschnitt B

Im zweiten Abschnitt der Detailbetrachtung herrscht nach der mathematischen Vergleichsmethode eine vollständige Übereinstimmung in der Qualität der N(t)-Kurve für alle Programme. Die Kurven unterscheiden sich lediglich durch einen konstanten Wert. Der Abstand in Form einer quantitativen Distanz ist auch hier verhältnismäßig hoch (vergl. Abb. F.53).

Abbildung F.54: Geo2 - $2,40\,m$ - Detailbetrachtung im Abschnitt C

Für das dritte Betrachtungsintervall ist ebenfalls eine identische Verhaltensweise des N(t)-Verlaufs der Rechenmodelle mit den Experimentaldaten festzustellen. Das innere euklidische Produkt φ ergibt für alle drei Softwarelösungen den Idealwert 1,00. Jedoch ergibt sich auch hier in Form einer leicht erhöhten euklidischen Distanz ϵ eine räumliche Distanz zwischen errechnetem und beobachtetem Verlauf (vergl. Abb. F.54).

Abbildung F.55: Geo2 - $2,40\,m$ - Detailbetrachtung im Abschnitt D

Der letzte Betrachtungsintervall D zeigt ein divergierendes Ergebnis in der euklidischen Distanz φ , wohingegen das innere euklidische Produkt konstant beim Idealwert 1,00 verbleibt (vergl. Abb. F.55). Die Veränderung der räumlichen Nähe von Experiment und einigen Modellen weisen auf die Schwierigkeit der Bewertung von Simulationsergebnissen am zeitlichen und räumlichen Rand eines Simulationsgebietes hin. Diese Beobachtung konnte bereits im ersten Betrachtungsintervall festgestellt werden.

G Digitaler Anhang

G.1 Volltext der Master-Thesis

G.2 Literatur

G.3 Simulationsdaten

G.4 Präsentation

G.5 Poster